Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot

In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive stee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2016-03, Vol.24 (2), p.553-564
Hauptverfasser: Li, Zhijun, Yang, Chenguang, Su, Chun-Yi, Deng, Jun, Zhang, Weidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 2
container_start_page 553
container_title IEEE transactions on control systems technology
container_volume 24
creator Li, Zhijun
Yang, Chenguang
Su, Chun-Yi
Deng, Jun
Zhang, Weidong
description In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods.
doi_str_mv 10.1109/TCST.2015.2454484
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2015_2454484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7174529</ieee_id><sourcerecordid>4047693341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmTXmpxKszPTW9D2iSa0fXMpBP893ZseHXeA897DjwInVMyoZSUV4tqvpjkhIpJzgXnih-gERVCZUQV4nDIpGBZIVhxjE5SWhJCucjlCL1-hBSgy25MchY_gnUtfonOhqYPPw5X0PURWuwh4nnvXAzdJwaPDX6C7gta6GAVmqFXh9bhN6ihP0VH3rTJne3nGL1PbxfVfTZ7vnuormdZk5esz0zjlfXU1rz0iilJybAa60kpvVdcGeVKT0VjhaiNV4SXkufMc1JYqzir2Rhd7u6uI3xvXOr1EjaxG15qKpXMOZdSDhTdUU2ElKLzeh3DysRfTYnemtNbc3prTu_NDZ2LXSc45_55SeWgrGR_s-VqKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787244777</pqid></control><display><type>article</type><title>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zhijun ; Yang, Chenguang ; Su, Chun-Yi ; Deng, Jun ; Zhang, Weidong</creator><creatorcontrib>Li, Zhijun ; Yang, Chenguang ; Su, Chun-Yi ; Deng, Jun ; Zhang, Weidong</creatorcontrib><description>In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2015.2454484</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Controllers ; Kinematics ; Mobile robots ; Model predictive control (MPC) ; Neural networks ; neurodynamics ; nonholonomic mobile robots (NMRs) ; Nuclear magnetic resonance ; Optimization ; Optimization techniques ; quadratic programming (QP) ; visual servo steering ; Visualization</subject><ispartof>IEEE transactions on control systems technology, 2016-03, Vol.24 (2), p.553-564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</citedby><cites>FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7174529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7174529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Su, Chun-Yi</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><title>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods.</description><subject>Cameras</subject><subject>Controllers</subject><subject>Kinematics</subject><subject>Mobile robots</subject><subject>Model predictive control (MPC)</subject><subject>Neural networks</subject><subject>neurodynamics</subject><subject>nonholonomic mobile robots (NMRs)</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>quadratic programming (QP)</subject><subject>visual servo steering</subject><subject>Visualization</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmTXmpxKszPTW9D2iSa0fXMpBP893ZseHXeA897DjwInVMyoZSUV4tqvpjkhIpJzgXnih-gERVCZUQV4nDIpGBZIVhxjE5SWhJCucjlCL1-hBSgy25MchY_gnUtfonOhqYPPw5X0PURWuwh4nnvXAzdJwaPDX6C7gta6GAVmqFXh9bhN6ihP0VH3rTJne3nGL1PbxfVfTZ7vnuormdZk5esz0zjlfXU1rz0iilJybAa60kpvVdcGeVKT0VjhaiNV4SXkufMc1JYqzir2Rhd7u6uI3xvXOr1EjaxG15qKpXMOZdSDhTdUU2ElKLzeh3DysRfTYnemtNbc3prTu_NDZ2LXSc45_55SeWgrGR_s-VqKQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Li, Zhijun</creator><creator>Yang, Chenguang</creator><creator>Su, Chun-Yi</creator><creator>Deng, Jun</creator><creator>Zhang, Weidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</title><author>Li, Zhijun ; Yang, Chenguang ; Su, Chun-Yi ; Deng, Jun ; Zhang, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cameras</topic><topic>Controllers</topic><topic>Kinematics</topic><topic>Mobile robots</topic><topic>Model predictive control (MPC)</topic><topic>Neural networks</topic><topic>neurodynamics</topic><topic>nonholonomic mobile robots (NMRs)</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>quadratic programming (QP)</topic><topic>visual servo steering</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Su, Chun-Yi</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zhijun</au><au>Yang, Chenguang</au><au>Su, Chun-Yi</au><au>Deng, Jun</au><au>Zhang, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>24</volume><issue>2</issue><spage>553</spage><epage>564</epage><pages>553-564</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2015.2454484</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2016-03, Vol.24 (2), p.553-564
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2015_2454484
source IEEE Electronic Library (IEL)
subjects Cameras
Controllers
Kinematics
Mobile robots
Model predictive control (MPC)
Neural networks
neurodynamics
nonholonomic mobile robots (NMRs)
Nuclear magnetic resonance
Optimization
Optimization techniques
quadratic programming (QP)
visual servo steering
Visualization
title Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Based%20Model%20Predictive%20Control%20for%20Steering%20of%20a%20Nonholonomic%20Mobile%20Robot&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Li,%20Zhijun&rft.date=2016-03-01&rft.volume=24&rft.issue=2&rft.spage=553&rft.epage=564&rft.pages=553-564&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2015.2454484&rft_dat=%3Cproquest_RIE%3E4047693341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787244777&rft_id=info:pmid/&rft_ieee_id=7174529&rfr_iscdi=true