Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot
In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive stee...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2016-03, Vol.24 (2), p.553-564 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 564 |
---|---|
container_issue | 2 |
container_start_page | 553 |
container_title | IEEE transactions on control systems technology |
container_volume | 24 |
creator | Li, Zhijun Yang, Chenguang Su, Chun-Yi Deng, Jun Zhang, Weidong |
description | In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods. |
doi_str_mv | 10.1109/TCST.2015.2454484 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2015_2454484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7174529</ieee_id><sourcerecordid>4047693341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmTXmpxKszPTW9D2iSa0fXMpBP893ZseHXeA897DjwInVMyoZSUV4tqvpjkhIpJzgXnih-gERVCZUQV4nDIpGBZIVhxjE5SWhJCucjlCL1-hBSgy25MchY_gnUtfonOhqYPPw5X0PURWuwh4nnvXAzdJwaPDX6C7gta6GAVmqFXh9bhN6ihP0VH3rTJne3nGL1PbxfVfTZ7vnuormdZk5esz0zjlfXU1rz0iilJybAa60kpvVdcGeVKT0VjhaiNV4SXkufMc1JYqzir2Rhd7u6uI3xvXOr1EjaxG15qKpXMOZdSDhTdUU2ElKLzeh3DysRfTYnemtNbc3prTu_NDZ2LXSc45_55SeWgrGR_s-VqKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787244777</pqid></control><display><type>article</type><title>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zhijun ; Yang, Chenguang ; Su, Chun-Yi ; Deng, Jun ; Zhang, Weidong</creator><creatorcontrib>Li, Zhijun ; Yang, Chenguang ; Su, Chun-Yi ; Deng, Jun ; Zhang, Weidong</creatorcontrib><description>In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2015.2454484</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cameras ; Controllers ; Kinematics ; Mobile robots ; Model predictive control (MPC) ; Neural networks ; neurodynamics ; nonholonomic mobile robots (NMRs) ; Nuclear magnetic resonance ; Optimization ; Optimization techniques ; quadratic programming (QP) ; visual servo steering ; Visualization</subject><ispartof>IEEE transactions on control systems technology, 2016-03, Vol.24 (2), p.553-564</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</citedby><cites>FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7174529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7174529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Su, Chun-Yi</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><title>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods.</description><subject>Cameras</subject><subject>Controllers</subject><subject>Kinematics</subject><subject>Mobile robots</subject><subject>Model predictive control (MPC)</subject><subject>Neural networks</subject><subject>neurodynamics</subject><subject>nonholonomic mobile robots (NMRs)</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>quadratic programming (QP)</subject><subject>visual servo steering</subject><subject>Visualization</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZNEmTXmpxKszPTW9D2iSa0fXMpBP893ZseHXeA897DjwInVMyoZSUV4tqvpjkhIpJzgXnih-gERVCZUQV4nDIpGBZIVhxjE5SWhJCucjlCL1-hBSgy25MchY_gnUtfonOhqYPPw5X0PURWuwh4nnvXAzdJwaPDX6C7gta6GAVmqFXh9bhN6ihP0VH3rTJne3nGL1PbxfVfTZ7vnuormdZk5esz0zjlfXU1rz0iilJybAa60kpvVdcGeVKT0VjhaiNV4SXkufMc1JYqzir2Rhd7u6uI3xvXOr1EjaxG15qKpXMOZdSDhTdUU2ElKLzeh3DysRfTYnemtNbc3prTu_NDZ2LXSc45_55SeWgrGR_s-VqKQ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Li, Zhijun</creator><creator>Yang, Chenguang</creator><creator>Su, Chun-Yi</creator><creator>Deng, Jun</creator><creator>Zhang, Weidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</title><author>Li, Zhijun ; Yang, Chenguang ; Su, Chun-Yi ; Deng, Jun ; Zhang, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-acf8df1db49f8387108dfadf097ff848a8e9f15cd55baf80497423f406dd843b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cameras</topic><topic>Controllers</topic><topic>Kinematics</topic><topic>Mobile robots</topic><topic>Model predictive control (MPC)</topic><topic>Neural networks</topic><topic>neurodynamics</topic><topic>nonholonomic mobile robots (NMRs)</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>quadratic programming (QP)</topic><topic>visual servo steering</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Yang, Chenguang</creatorcontrib><creatorcontrib>Su, Chun-Yi</creatorcontrib><creatorcontrib>Deng, Jun</creatorcontrib><creatorcontrib>Zhang, Weidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zhijun</au><au>Yang, Chenguang</au><au>Su, Chun-Yi</au><au>Deng, Jun</au><au>Zhang, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>24</volume><issue>2</issue><spage>553</spage><epage>564</epage><pages>553-564</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this paper, we have developed a novel visual servo-based model predictive control method to steer a wheeled mobile robot (WMR) moving in a polar coordinate toward a desired target. The proposed control scheme has been realized at both kinematics and dynamics levels. The kinematics predictive steering controller generates command of desired velocities that are achieved by employing a low-level motion controller, while the dynamics predictive controller directly generates torques used to steer the WMR to the target. In the presence of both kinematics and dynamics constraints, the control design is carried out using quadratic programming (QP) for optimal performance. The neurodynamic optimization technique, particularly the primal-dual neural network, is employed to solve the QP problems. Theoretical analysis has been first performed to show that the desired velocities can be achieved with the guaranteed stability, as well as with the global convergence to the optimal solutions of formulated convex programming problems. Experiments have then been carried out to validate the effectiveness of the proposed control scheme and illustrate its advantage over the conventional methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2015.2454484</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2016-03, Vol.24 (2), p.553-564 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2015_2454484 |
source | IEEE Electronic Library (IEL) |
subjects | Cameras Controllers Kinematics Mobile robots Model predictive control (MPC) Neural networks neurodynamics nonholonomic mobile robots (NMRs) Nuclear magnetic resonance Optimization Optimization techniques quadratic programming (QP) visual servo steering Visualization |
title | Vision-Based Model Predictive Control for Steering of a Nonholonomic Mobile Robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vision-Based%20Model%20Predictive%20Control%20for%20Steering%20of%20a%20Nonholonomic%20Mobile%20Robot&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Li,%20Zhijun&rft.date=2016-03-01&rft.volume=24&rft.issue=2&rft.spage=553&rft.epage=564&rft.pages=553-564&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2015.2454484&rft_dat=%3Cproquest_RIE%3E4047693341%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787244777&rft_id=info:pmid/&rft_ieee_id=7174529&rfr_iscdi=true |