LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles
This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2015-07, Vol.23 (4), p.1427-1439 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1439 |
---|---|
container_issue | 4 |
container_start_page | 1427 |
container_title | IEEE transactions on control systems technology |
container_volume | 23 |
creator | Florescu, Adrian Bratcu, Antoneta Iuliana Munteanu, Iulian Rumeau, Axel Bacha, Seddik |
description | This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach. |
doi_str_mv | 10.1109/TCST.2014.2372472 |
format | Article |
fullrecord | <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2014_2372472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6983553</ieee_id><sourcerecordid>oai_HAL_hal_01098345v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHzJqw-duaRJ28da5iZUhmwKPoUsTbdK1pY0CPv2pmzs6Y7j97_jfgg9ApkBkOxlU6w3M0ognlGW0DihV2gCnKcRSQW_Dj0RLBKciVt0Nwy_JJCcJhP0U34u8Kr3zUFZXHStd53Fed_bxlTYd3jVRq-dchWet8btjvhDtWpnDqb1eH0cvDngrsa5tdHcGu1do_G32TfamuEe3dTKDubhXKfo622-KZZRuVq8F3kZ6ZhlPtJQc6gyQYXIOGy1ZqkGzWiSZcB4AobpaksqtiVxRSFlKmEm05wDB1XHnLEpej7t3SsrexcecUfZqUYu81KOMxL8pCzmfxBYOLHadcPgTH0JAJGjRzl6lKNHefYYMk-nTGOMufAirOTh-j9Sf2yq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</title><source>IEEE Xplore</source><creator>Florescu, Adrian ; Bratcu, Antoneta Iuliana ; Munteanu, Iulian ; Rumeau, Axel ; Bacha, Seddik</creator><creatorcontrib>Florescu, Adrian ; Bratcu, Antoneta Iuliana ; Munteanu, Iulian ; Rumeau, Axel ; Bacha, Seddik</creatorcontrib><description>This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2014.2372472</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic ; Batteries ; Electric power ; Electric vehicles (EVs) ; Energy management ; Engineering Sciences ; Equations ; gain scheduling ; Hafnium ; linearization techniques ; Optimal control ; real-time simulation ; Vehicles ; Voltage control</subject><ispartof>IEEE transactions on control systems technology, 2015-07, Vol.23 (4), p.1427-1439</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</citedby><cites>FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</cites><orcidid>0000-0002-6912-5026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6983553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6983553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01098345$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Florescu, Adrian</creatorcontrib><creatorcontrib>Bratcu, Antoneta Iuliana</creatorcontrib><creatorcontrib>Munteanu, Iulian</creatorcontrib><creatorcontrib>Rumeau, Axel</creatorcontrib><creatorcontrib>Bacha, Seddik</creatorcontrib><title>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach.</description><subject>Automatic</subject><subject>Batteries</subject><subject>Electric power</subject><subject>Electric vehicles (EVs)</subject><subject>Energy management</subject><subject>Engineering Sciences</subject><subject>Equations</subject><subject>gain scheduling</subject><subject>Hafnium</subject><subject>linearization techniques</subject><subject>Optimal control</subject><subject>real-time simulation</subject><subject>Vehicles</subject><subject>Voltage control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKcfQHzJqw-duaRJ28da5iZUhmwKPoUsTbdK1pY0CPv2pmzs6Y7j97_jfgg9ApkBkOxlU6w3M0ognlGW0DihV2gCnKcRSQW_Dj0RLBKciVt0Nwy_JJCcJhP0U34u8Kr3zUFZXHStd53Fed_bxlTYd3jVRq-dchWet8btjvhDtWpnDqb1eH0cvDngrsa5tdHcGu1do_G32TfamuEe3dTKDubhXKfo622-KZZRuVq8F3kZ6ZhlPtJQc6gyQYXIOGy1ZqkGzWiSZcB4AobpaksqtiVxRSFlKmEm05wDB1XHnLEpej7t3SsrexcecUfZqUYu81KOMxL8pCzmfxBYOLHadcPgTH0JAJGjRzl6lKNHefYYMk-nTGOMufAirOTh-j9Sf2yq</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Florescu, Adrian</creator><creator>Bratcu, Antoneta Iuliana</creator><creator>Munteanu, Iulian</creator><creator>Rumeau, Axel</creator><creator>Bacha, Seddik</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6912-5026</orcidid></search><sort><creationdate>20150701</creationdate><title>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</title><author>Florescu, Adrian ; Bratcu, Antoneta Iuliana ; Munteanu, Iulian ; Rumeau, Axel ; Bacha, Seddik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automatic</topic><topic>Batteries</topic><topic>Electric power</topic><topic>Electric vehicles (EVs)</topic><topic>Energy management</topic><topic>Engineering Sciences</topic><topic>Equations</topic><topic>gain scheduling</topic><topic>Hafnium</topic><topic>linearization techniques</topic><topic>Optimal control</topic><topic>real-time simulation</topic><topic>Vehicles</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florescu, Adrian</creatorcontrib><creatorcontrib>Bratcu, Antoneta Iuliana</creatorcontrib><creatorcontrib>Munteanu, Iulian</creatorcontrib><creatorcontrib>Rumeau, Axel</creatorcontrib><creatorcontrib>Bacha, Seddik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Florescu, Adrian</au><au>Bratcu, Antoneta Iuliana</au><au>Munteanu, Iulian</au><au>Rumeau, Axel</au><au>Bacha, Seddik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>23</volume><issue>4</issue><spage>1427</spage><epage>1439</epage><pages>1427-1439</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2014.2372472</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6912-5026</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2015-07, Vol.23 (4), p.1427-1439 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2014_2372472 |
source | IEEE Xplore |
subjects | Automatic Batteries Electric power Electric vehicles (EVs) Energy management Engineering Sciences Equations gain scheduling Hafnium linearization techniques Optimal control real-time simulation Vehicles Voltage control |
title | LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LQG%20Optimal%20Control%20Applied%20to%20On-Board%20Energy%20Management%20System%20of%20All-Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Florescu,%20Adrian&rft.date=2015-07-01&rft.volume=23&rft.issue=4&rft.spage=1427&rft.epage=1439&rft.pages=1427-1439&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2014.2372472&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_01098345v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6983553&rfr_iscdi=true |