LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles

This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2015-07, Vol.23 (4), p.1427-1439
Hauptverfasser: Florescu, Adrian, Bratcu, Antoneta Iuliana, Munteanu, Iulian, Rumeau, Axel, Bacha, Seddik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1439
container_issue 4
container_start_page 1427
container_title IEEE transactions on control systems technology
container_volume 23
creator Florescu, Adrian
Bratcu, Antoneta Iuliana
Munteanu, Iulian
Rumeau, Axel
Bacha, Seddik
description This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach.
doi_str_mv 10.1109/TCST.2014.2372472
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2014_2372472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6983553</ieee_id><sourcerecordid>oai_HAL_hal_01098345v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQHzJqw-duaRJ28da5iZUhmwKPoUsTbdK1pY0CPv2pmzs6Y7j97_jfgg9ApkBkOxlU6w3M0ognlGW0DihV2gCnKcRSQW_Dj0RLBKciVt0Nwy_JJCcJhP0U34u8Kr3zUFZXHStd53Fed_bxlTYd3jVRq-dchWet8btjvhDtWpnDqb1eH0cvDngrsa5tdHcGu1do_G32TfamuEe3dTKDubhXKfo622-KZZRuVq8F3kZ6ZhlPtJQc6gyQYXIOGy1ZqkGzWiSZcB4AobpaksqtiVxRSFlKmEm05wDB1XHnLEpej7t3SsrexcecUfZqUYu81KOMxL8pCzmfxBYOLHadcPgTH0JAJGjRzl6lKNHefYYMk-nTGOMufAirOTh-j9Sf2yq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</title><source>IEEE Xplore</source><creator>Florescu, Adrian ; Bratcu, Antoneta Iuliana ; Munteanu, Iulian ; Rumeau, Axel ; Bacha, Seddik</creator><creatorcontrib>Florescu, Adrian ; Bratcu, Antoneta Iuliana ; Munteanu, Iulian ; Rumeau, Axel ; Bacha, Seddik</creatorcontrib><description>This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2014.2372472</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic ; Batteries ; Electric power ; Electric vehicles (EVs) ; Energy management ; Engineering Sciences ; Equations ; gain scheduling ; Hafnium ; linearization techniques ; Optimal control ; real-time simulation ; Vehicles ; Voltage control</subject><ispartof>IEEE transactions on control systems technology, 2015-07, Vol.23 (4), p.1427-1439</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</citedby><cites>FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</cites><orcidid>0000-0002-6912-5026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6983553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6983553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01098345$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Florescu, Adrian</creatorcontrib><creatorcontrib>Bratcu, Antoneta Iuliana</creatorcontrib><creatorcontrib>Munteanu, Iulian</creatorcontrib><creatorcontrib>Rumeau, Axel</creatorcontrib><creatorcontrib>Bacha, Seddik</creatorcontrib><title>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach.</description><subject>Automatic</subject><subject>Batteries</subject><subject>Electric power</subject><subject>Electric vehicles (EVs)</subject><subject>Energy management</subject><subject>Engineering Sciences</subject><subject>Equations</subject><subject>gain scheduling</subject><subject>Hafnium</subject><subject>linearization techniques</subject><subject>Optimal control</subject><subject>real-time simulation</subject><subject>Vehicles</subject><subject>Voltage control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKcfQHzJqw-duaRJ28da5iZUhmwKPoUsTbdK1pY0CPv2pmzs6Y7j97_jfgg9ApkBkOxlU6w3M0ognlGW0DihV2gCnKcRSQW_Dj0RLBKciVt0Nwy_JJCcJhP0U34u8Kr3zUFZXHStd53Fed_bxlTYd3jVRq-dchWet8btjvhDtWpnDqb1eH0cvDngrsa5tdHcGu1do_G32TfamuEe3dTKDubhXKfo622-KZZRuVq8F3kZ6ZhlPtJQc6gyQYXIOGy1ZqkGzWiSZcB4AobpaksqtiVxRSFlKmEm05wDB1XHnLEpej7t3SsrexcecUfZqUYu81KOMxL8pCzmfxBYOLHadcPgTH0JAJGjRzl6lKNHefYYMk-nTGOMufAirOTh-j9Sf2yq</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Florescu, Adrian</creator><creator>Bratcu, Antoneta Iuliana</creator><creator>Munteanu, Iulian</creator><creator>Rumeau, Axel</creator><creator>Bacha, Seddik</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6912-5026</orcidid></search><sort><creationdate>20150701</creationdate><title>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</title><author>Florescu, Adrian ; Bratcu, Antoneta Iuliana ; Munteanu, Iulian ; Rumeau, Axel ; Bacha, Seddik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-c1f51d96266951bcc38c1c3279913571e3cdb0d3b04d2183a73e9c55151af4533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automatic</topic><topic>Batteries</topic><topic>Electric power</topic><topic>Electric vehicles (EVs)</topic><topic>Energy management</topic><topic>Engineering Sciences</topic><topic>Equations</topic><topic>gain scheduling</topic><topic>Hafnium</topic><topic>linearization techniques</topic><topic>Optimal control</topic><topic>real-time simulation</topic><topic>Vehicles</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Florescu, Adrian</creatorcontrib><creatorcontrib>Bratcu, Antoneta Iuliana</creatorcontrib><creatorcontrib>Munteanu, Iulian</creatorcontrib><creatorcontrib>Rumeau, Axel</creatorcontrib><creatorcontrib>Bacha, Seddik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Florescu, Adrian</au><au>Bratcu, Antoneta Iuliana</au><au>Munteanu, Iulian</au><au>Rumeau, Axel</au><au>Bacha, Seddik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>23</volume><issue>4</issue><spage>1427</spage><epage>1439</epage><pages>1427-1439</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper proposes a general frequency-separation-based strategy of coordinating power sources within off-grid applications. The application chosen to illustrate this strategy is an electric vehicle equipped with two power sources-a battery and an ultracapacitor (UC)-for which coordination problem can be formulated and solved as a linear quadratic Gaussian (LQG) optimal control problem. The two power sources are controlled to share the stochastically variable load according to their respective frequency range of specialization: low-frequency variations of the required power are supplied by the main source, the battery, whereas high-frequency variations are provided by the UC. The studied system is a bilinear one; it can be modeled as a linear parameter varying system. An LQG-based optimal control structure is designed and coupled with a gain-scheduling structure to cover the entire operating range. In this way, load regulation performance and the variations of battery current are conveniently traded off to preserve battery reliability and lifetime. Real-time experiments on a dedicated test rig-based on employing a real UC-validate the proposed optimal power flow management approach.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2014.2372472</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6912-5026</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2015-07, Vol.23 (4), p.1427-1439
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2014_2372472
source IEEE Xplore
subjects Automatic
Batteries
Electric power
Electric vehicles (EVs)
Energy management
Engineering Sciences
Equations
gain scheduling
Hafnium
linearization techniques
Optimal control
real-time simulation
Vehicles
Voltage control
title LQG Optimal Control Applied to On-Board Energy Management System of All-Electric Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LQG%20Optimal%20Control%20Applied%20to%20On-Board%20Energy%20Management%20System%20of%20All-Electric%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Florescu,%20Adrian&rft.date=2015-07-01&rft.volume=23&rft.issue=4&rft.spage=1427&rft.epage=1439&rft.pages=1427-1439&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2014.2372472&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_01098345v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6983553&rfr_iscdi=true