Design of Linear Feedback Controllers for Dynamic Systems With Hysteresis

This paper proposes an approach to deal with the control of a class of dynamical systems affected by hysteresis, which is particularly common in applications of smart materials to motion control. The controlled plant is assumed to be a combination of a linear system with a hysteretic operator that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2014-07, Vol.22 (4), p.1268-1280
Hauptverfasser: Riccardi, Leonardo, Naso, David, Turchiano, Biagio, Janocha, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1280
container_issue 4
container_start_page 1268
container_title IEEE transactions on control systems technology
container_volume 22
creator Riccardi, Leonardo
Naso, David
Turchiano, Biagio
Janocha, Hartmut
description This paper proposes an approach to deal with the control of a class of dynamical systems affected by hysteresis, which is particularly common in applications of smart materials to motion control. The controlled plant is assumed to be a combination of a linear system with a hysteretic operator that can appear either in series or in a feedback path with respect to the linear component, while the controller is defined as a linear combination of the tracking error, its integral and derivatives. This paper mainly focuses on tracking behavior with constant references, and formulates the output regulation as a problem of stability of a polytopic linear differential inclusion, which does not require the identification of an accurate (direct or inverse) model of the hysteresis. The resulting conditions allow the user to seek for controller parameters that guarantee the achievement of a predefined control goal by solving a linear matrix inequality problem. Beside validation through numerical simulation, the method is successfully applied to control a challenging and innovative system, which uses two bars of magnetic shape memory alloy as the active elements of a multistable precise positioning device.
doi_str_mv 10.1109/TCST.2013.2282661
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2013_2282661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6626620</ieee_id><sourcerecordid>3378119801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-e37037e53f4760ed0f1d90e25f656c2c6f90ba1afb42093dfb78a13e34b53c2f3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_ETjKilFKkSgwtYrQc5wwpSVzsdOi_x1ErBqa70z3v6fQgdEvJjFJSPG7K9WbGCOUzxnImJT1DEypEnpBcivPYE8kTKbi8RFchbAmhqWDZBL3OITSfPXYWr5oetMcLgLrS5huXrh-8a1vwAVvn8fzQ664xeH0IA3QBfzTDF16Og483wjW6sLoNcHOqU_S-eN6Uy2T19vJaPq0Sw5kcEuAZ4RkIbtNMEqiJpXVBgAkrhTTMSFuQSlNtq5SRgte2ynJNOfC0Etwwy6fo4Xh3593PHsKguiYYaFvdg9sHRYXMKGVZISJ6_w_dur3v43eRSiXhrEiLSNEjZbwLwYNVO9902h8UJWqUq0a5apSrTnJj5u6YaQDgj5cyLhnhv4AadJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546032949</pqid></control><display><type>article</type><title>Design of Linear Feedback Controllers for Dynamic Systems With Hysteresis</title><source>IEEE Electronic Library (IEL)</source><creator>Riccardi, Leonardo ; Naso, David ; Turchiano, Biagio ; Janocha, Hartmut</creator><creatorcontrib>Riccardi, Leonardo ; Naso, David ; Turchiano, Biagio ; Janocha, Hartmut</creatorcontrib><description>This paper proposes an approach to deal with the control of a class of dynamical systems affected by hysteresis, which is particularly common in applications of smart materials to motion control. The controlled plant is assumed to be a combination of a linear system with a hysteretic operator that can appear either in series or in a feedback path with respect to the linear component, while the controller is defined as a linear combination of the tracking error, its integral and derivatives. This paper mainly focuses on tracking behavior with constant references, and formulates the output regulation as a problem of stability of a polytopic linear differential inclusion, which does not require the identification of an accurate (direct or inverse) model of the hysteresis. The resulting conditions allow the user to seek for controller parameters that guarantee the achievement of a predefined control goal by solving a linear matrix inequality problem. Beside validation through numerical simulation, the method is successfully applied to control a challenging and innovative system, which uses two bars of magnetic shape memory alloy as the active elements of a multistable precise positioning device.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2013.2282661</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuators ; Asymptotic stability ; Control systems ; Control theory ; Controllers ; Dynamical systems ; Dynamics ; Feedback ; Hysteresis ; linear matrix inequalities (LMIs) ; Magnetic hysteresis ; magnetic shape memory alloys (MSMAs) ; Mathematical models ; position control ; smart materials ; Stability criteria ; unconventional actuators ; Vectors</subject><ispartof>IEEE transactions on control systems technology, 2014-07, Vol.22 (4), p.1268-1280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-e37037e53f4760ed0f1d90e25f656c2c6f90ba1afb42093dfb78a13e34b53c2f3</citedby><cites>FETCH-LOGICAL-c326t-e37037e53f4760ed0f1d90e25f656c2c6f90ba1afb42093dfb78a13e34b53c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6626620$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6626620$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Riccardi, Leonardo</creatorcontrib><creatorcontrib>Naso, David</creatorcontrib><creatorcontrib>Turchiano, Biagio</creatorcontrib><creatorcontrib>Janocha, Hartmut</creatorcontrib><title>Design of Linear Feedback Controllers for Dynamic Systems With Hysteresis</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper proposes an approach to deal with the control of a class of dynamical systems affected by hysteresis, which is particularly common in applications of smart materials to motion control. The controlled plant is assumed to be a combination of a linear system with a hysteretic operator that can appear either in series or in a feedback path with respect to the linear component, while the controller is defined as a linear combination of the tracking error, its integral and derivatives. This paper mainly focuses on tracking behavior with constant references, and formulates the output regulation as a problem of stability of a polytopic linear differential inclusion, which does not require the identification of an accurate (direct or inverse) model of the hysteresis. The resulting conditions allow the user to seek for controller parameters that guarantee the achievement of a predefined control goal by solving a linear matrix inequality problem. Beside validation through numerical simulation, the method is successfully applied to control a challenging and innovative system, which uses two bars of magnetic shape memory alloy as the active elements of a multistable precise positioning device.</description><subject>Actuators</subject><subject>Asymptotic stability</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Feedback</subject><subject>Hysteresis</subject><subject>linear matrix inequalities (LMIs)</subject><subject>Magnetic hysteresis</subject><subject>magnetic shape memory alloys (MSMAs)</subject><subject>Mathematical models</subject><subject>position control</subject><subject>smart materials</subject><subject>Stability criteria</subject><subject>unconventional actuators</subject><subject>Vectors</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_ETjKilFKkSgwtYrQc5wwpSVzsdOi_x1ErBqa70z3v6fQgdEvJjFJSPG7K9WbGCOUzxnImJT1DEypEnpBcivPYE8kTKbi8RFchbAmhqWDZBL3OITSfPXYWr5oetMcLgLrS5huXrh-8a1vwAVvn8fzQ664xeH0IA3QBfzTDF16Og483wjW6sLoNcHOqU_S-eN6Uy2T19vJaPq0Sw5kcEuAZ4RkIbtNMEqiJpXVBgAkrhTTMSFuQSlNtq5SRgte2ynJNOfC0Etwwy6fo4Xh3593PHsKguiYYaFvdg9sHRYXMKGVZISJ6_w_dur3v43eRSiXhrEiLSNEjZbwLwYNVO9902h8UJWqUq0a5apSrTnJj5u6YaQDgj5cyLhnhv4AadJQ</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Riccardi, Leonardo</creator><creator>Naso, David</creator><creator>Turchiano, Biagio</creator><creator>Janocha, Hartmut</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20140701</creationdate><title>Design of Linear Feedback Controllers for Dynamic Systems With Hysteresis</title><author>Riccardi, Leonardo ; Naso, David ; Turchiano, Biagio ; Janocha, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-e37037e53f4760ed0f1d90e25f656c2c6f90ba1afb42093dfb78a13e34b53c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuators</topic><topic>Asymptotic stability</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Feedback</topic><topic>Hysteresis</topic><topic>linear matrix inequalities (LMIs)</topic><topic>Magnetic hysteresis</topic><topic>magnetic shape memory alloys (MSMAs)</topic><topic>Mathematical models</topic><topic>position control</topic><topic>smart materials</topic><topic>Stability criteria</topic><topic>unconventional actuators</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riccardi, Leonardo</creatorcontrib><creatorcontrib>Naso, David</creatorcontrib><creatorcontrib>Turchiano, Biagio</creatorcontrib><creatorcontrib>Janocha, Hartmut</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Riccardi, Leonardo</au><au>Naso, David</au><au>Turchiano, Biagio</au><au>Janocha, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Linear Feedback Controllers for Dynamic Systems With Hysteresis</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2014-07-01</date><risdate>2014</risdate><volume>22</volume><issue>4</issue><spage>1268</spage><epage>1280</epage><pages>1268-1280</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper proposes an approach to deal with the control of a class of dynamical systems affected by hysteresis, which is particularly common in applications of smart materials to motion control. The controlled plant is assumed to be a combination of a linear system with a hysteretic operator that can appear either in series or in a feedback path with respect to the linear component, while the controller is defined as a linear combination of the tracking error, its integral and derivatives. This paper mainly focuses on tracking behavior with constant references, and formulates the output regulation as a problem of stability of a polytopic linear differential inclusion, which does not require the identification of an accurate (direct or inverse) model of the hysteresis. The resulting conditions allow the user to seek for controller parameters that guarantee the achievement of a predefined control goal by solving a linear matrix inequality problem. Beside validation through numerical simulation, the method is successfully applied to control a challenging and innovative system, which uses two bars of magnetic shape memory alloy as the active elements of a multistable precise positioning device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2013.2282661</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2014-07, Vol.22 (4), p.1268-1280
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2013_2282661
source IEEE Electronic Library (IEL)
subjects Actuators
Asymptotic stability
Control systems
Control theory
Controllers
Dynamical systems
Dynamics
Feedback
Hysteresis
linear matrix inequalities (LMIs)
Magnetic hysteresis
magnetic shape memory alloys (MSMAs)
Mathematical models
position control
smart materials
Stability criteria
unconventional actuators
Vectors
title Design of Linear Feedback Controllers for Dynamic Systems With Hysteresis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Linear%20Feedback%20Controllers%20for%20Dynamic%20Systems%20With%20Hysteresis&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Riccardi,%20Leonardo&rft.date=2014-07-01&rft.volume=22&rft.issue=4&rft.spage=1268&rft.epage=1280&rft.pages=1268-1280&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2013.2282661&rft_dat=%3Cproquest_RIE%3E3378119801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546032949&rft_id=info:pmid/&rft_ieee_id=6626620&rfr_iscdi=true