Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange

A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2013-07, Vol.21 (4), p.1407-1415
Hauptverfasser: Dierks, Travis, Brenner, B., Jagannathan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1415
container_issue 4
container_start_page 1407
container_title IEEE transactions on control systems technology
container_volume 21
creator Dierks, Travis
Brenner, B.
Jagannathan, S.
description A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach.
doi_str_mv 10.1109/TCST.2012.2200484
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2012_2200484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220872</ieee_id><sourcerecordid>1417885411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhisEEuPjByAukbhw6XCSJk2PMG0waYAEQxyjtHVZR9eMpBXw78m0wYGTLft5LeuJojMKQ0ohu5qPnudDBpQNGQNIVLIXDagQKgYlxX7oQfJYCi4PoyPvlwA0ESwdROYBe2ca8oDdp3Xv8Y3xWJLHdVevwnRk287ZhtiK3Nu8bpA82dx2ZGLdynS1bT15rbsFecKyL0Ju2la_GzL-KhamfcOT6KAyjcfTXT2OXibj-egunj3eTkfXs7jgTHZxylmpyqyoDEsKUICiKiHhoKgpZZoX4XemBAYoTTEPgyzLGM1yqEBxmnJ-HF1u766d_ejRd3pV-wKbxrRoe69pQlOlREJpQC_-oUvbuzZ8pymXGQMhlQgU3VKFs947rPTaBSvuW1PQG-l6I11vpOud9JA532ZqRPzjZVirlPEfWHd8oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369205685</pqid></control><display><type>article</type><title>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</title><source>IEEE Electronic Library (IEL)</source><creator>Dierks, Travis ; Brenner, B. ; Jagannathan, S.</creator><creatorcontrib>Dierks, Travis ; Brenner, B. ; Jagannathan, S.</creatorcontrib><description>A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2012.2200484</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation methods ; Artificial neural networks ; Cost function ; Feedforward neural networks ; Followers ; Formations ; Kinematics ; Leader-follower formation control ; Lyapunov stability ; neural network (NN) ; Neural networks ; nonholonomic mobile robot ; Nonlinearity ; Obstacles ; Operations research ; Optimal control ; Robot control ; Robots ; Studies ; Wireless communications</subject><ispartof>IEEE transactions on control systems technology, 2013-07, Vol.21 (4), p.1407-1415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</citedby><cites>FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dierks, Travis</creatorcontrib><creatorcontrib>Brenner, B.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><title>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach.</description><subject>Approximation methods</subject><subject>Artificial neural networks</subject><subject>Cost function</subject><subject>Feedforward neural networks</subject><subject>Followers</subject><subject>Formations</subject><subject>Kinematics</subject><subject>Leader-follower formation control</subject><subject>Lyapunov stability</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>nonholonomic mobile robot</subject><subject>Nonlinearity</subject><subject>Obstacles</subject><subject>Operations research</subject><subject>Optimal control</subject><subject>Robot control</subject><subject>Robots</subject><subject>Studies</subject><subject>Wireless communications</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhisEEuPjByAukbhw6XCSJk2PMG0waYAEQxyjtHVZR9eMpBXw78m0wYGTLft5LeuJojMKQ0ohu5qPnudDBpQNGQNIVLIXDagQKgYlxX7oQfJYCi4PoyPvlwA0ESwdROYBe2ca8oDdp3Xv8Y3xWJLHdVevwnRk287ZhtiK3Nu8bpA82dx2ZGLdynS1bT15rbsFecKyL0Ju2la_GzL-KhamfcOT6KAyjcfTXT2OXibj-egunj3eTkfXs7jgTHZxylmpyqyoDEsKUICiKiHhoKgpZZoX4XemBAYoTTEPgyzLGM1yqEBxmnJ-HF1u766d_ejRd3pV-wKbxrRoe69pQlOlREJpQC_-oUvbuzZ8pymXGQMhlQgU3VKFs947rPTaBSvuW1PQG-l6I11vpOud9JA532ZqRPzjZVirlPEfWHd8oQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Dierks, Travis</creator><creator>Brenner, B.</creator><creator>Jagannathan, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20130701</creationdate><title>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</title><author>Dierks, Travis ; Brenner, B. ; Jagannathan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation methods</topic><topic>Artificial neural networks</topic><topic>Cost function</topic><topic>Feedforward neural networks</topic><topic>Followers</topic><topic>Formations</topic><topic>Kinematics</topic><topic>Leader-follower formation control</topic><topic>Lyapunov stability</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>nonholonomic mobile robot</topic><topic>Nonlinearity</topic><topic>Obstacles</topic><topic>Operations research</topic><topic>Optimal control</topic><topic>Robot control</topic><topic>Robots</topic><topic>Studies</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dierks, Travis</creatorcontrib><creatorcontrib>Brenner, B.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dierks, Travis</au><au>Brenner, B.</au><au>Jagannathan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>21</volume><issue>4</issue><spage>1407</spage><epage>1415</epage><pages>1407-1415</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2012.2200484</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2013-07, Vol.21 (4), p.1407-1415
issn 1063-6536
1558-0865
language eng
recordid cdi_crossref_primary_10_1109_TCST_2012_2200484
source IEEE Electronic Library (IEL)
subjects Approximation methods
Artificial neural networks
Cost function
Feedforward neural networks
Followers
Formations
Kinematics
Leader-follower formation control
Lyapunov stability
neural network (NN)
Neural networks
nonholonomic mobile robot
Nonlinearity
Obstacles
Operations research
Optimal control
Robot control
Robots
Studies
Wireless communications
title Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network-Based%20Optimal%20Control%20of%20Mobile%20Robot%20Formations%20With%20Reduced%20Information%20Exchange&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Dierks,%20Travis&rft.date=2013-07-01&rft.volume=21&rft.issue=4&rft.spage=1407&rft.epage=1415&rft.pages=1407-1415&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2012.2200484&rft_dat=%3Cproquest_RIE%3E1417885411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369205685&rft_id=info:pmid/&rft_ieee_id=6220872&rfr_iscdi=true