Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange
A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocitie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2013-07, Vol.21 (4), p.1407-1415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1415 |
---|---|
container_issue | 4 |
container_start_page | 1407 |
container_title | IEEE transactions on control systems technology |
container_volume | 21 |
creator | Dierks, Travis Brenner, B. Jagannathan, S. |
description | A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach. |
doi_str_mv | 10.1109/TCST.2012.2200484 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2012_2200484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220872</ieee_id><sourcerecordid>1417885411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhisEEuPjByAukbhw6XCSJk2PMG0waYAEQxyjtHVZR9eMpBXw78m0wYGTLft5LeuJojMKQ0ohu5qPnudDBpQNGQNIVLIXDagQKgYlxX7oQfJYCi4PoyPvlwA0ESwdROYBe2ca8oDdp3Xv8Y3xWJLHdVevwnRk287ZhtiK3Nu8bpA82dx2ZGLdynS1bT15rbsFecKyL0Ju2la_GzL-KhamfcOT6KAyjcfTXT2OXibj-egunj3eTkfXs7jgTHZxylmpyqyoDEsKUICiKiHhoKgpZZoX4XemBAYoTTEPgyzLGM1yqEBxmnJ-HF1u766d_ejRd3pV-wKbxrRoe69pQlOlREJpQC_-oUvbuzZ8pymXGQMhlQgU3VKFs947rPTaBSvuW1PQG-l6I11vpOud9JA532ZqRPzjZVirlPEfWHd8oQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369205685</pqid></control><display><type>article</type><title>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</title><source>IEEE Electronic Library (IEL)</source><creator>Dierks, Travis ; Brenner, B. ; Jagannathan, S.</creator><creatorcontrib>Dierks, Travis ; Brenner, B. ; Jagannathan, S.</creatorcontrib><description>A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2012.2200484</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation methods ; Artificial neural networks ; Cost function ; Feedforward neural networks ; Followers ; Formations ; Kinematics ; Leader-follower formation control ; Lyapunov stability ; neural network (NN) ; Neural networks ; nonholonomic mobile robot ; Nonlinearity ; Obstacles ; Operations research ; Optimal control ; Robot control ; Robots ; Studies ; Wireless communications</subject><ispartof>IEEE transactions on control systems technology, 2013-07, Vol.21 (4), p.1407-1415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</citedby><cites>FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dierks, Travis</creatorcontrib><creatorcontrib>Brenner, B.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><title>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach.</description><subject>Approximation methods</subject><subject>Artificial neural networks</subject><subject>Cost function</subject><subject>Feedforward neural networks</subject><subject>Followers</subject><subject>Formations</subject><subject>Kinematics</subject><subject>Leader-follower formation control</subject><subject>Lyapunov stability</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>nonholonomic mobile robot</subject><subject>Nonlinearity</subject><subject>Obstacles</subject><subject>Operations research</subject><subject>Optimal control</subject><subject>Robot control</subject><subject>Robots</subject><subject>Studies</subject><subject>Wireless communications</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhisEEuPjByAukbhw6XCSJk2PMG0waYAEQxyjtHVZR9eMpBXw78m0wYGTLft5LeuJojMKQ0ohu5qPnudDBpQNGQNIVLIXDagQKgYlxX7oQfJYCi4PoyPvlwA0ESwdROYBe2ca8oDdp3Xv8Y3xWJLHdVevwnRk287ZhtiK3Nu8bpA82dx2ZGLdynS1bT15rbsFecKyL0Ju2la_GzL-KhamfcOT6KAyjcfTXT2OXibj-egunj3eTkfXs7jgTHZxylmpyqyoDEsKUICiKiHhoKgpZZoX4XemBAYoTTEPgyzLGM1yqEBxmnJ-HF1u766d_ejRd3pV-wKbxrRoe69pQlOlREJpQC_-oUvbuzZ8pymXGQMhlQgU3VKFs947rPTaBSvuW1PQG-l6I11vpOud9JA532ZqRPzjZVirlPEfWHd8oQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Dierks, Travis</creator><creator>Brenner, B.</creator><creator>Jagannathan, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20130701</creationdate><title>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</title><author>Dierks, Travis ; Brenner, B. ; Jagannathan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-732d8d9cfa24c080e5fd043081ad67bc653285e2d877eb7bc999219b0f0831733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation methods</topic><topic>Artificial neural networks</topic><topic>Cost function</topic><topic>Feedforward neural networks</topic><topic>Followers</topic><topic>Formations</topic><topic>Kinematics</topic><topic>Leader-follower formation control</topic><topic>Lyapunov stability</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>nonholonomic mobile robot</topic><topic>Nonlinearity</topic><topic>Obstacles</topic><topic>Operations research</topic><topic>Optimal control</topic><topic>Robot control</topic><topic>Robots</topic><topic>Studies</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dierks, Travis</creatorcontrib><creatorcontrib>Brenner, B.</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dierks, Travis</au><au>Brenner, B.</au><au>Jagannathan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>21</volume><issue>4</issue><spage>1407</spage><epage>1415</epage><pages>1407-1415</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>A novel formation control scheme for mobile robots is introduced in the context of leader-follower framework with reduced communication exchange. The dynamical controller inputs for the robots are approximated from nonlinear optimal control techniques in order to track the designed control velocities generated by the kinematic controller. The proposed nonlinear optimal control technique, referred to as adaptive dynamic programming, uses neural networks (NNs) to solve the optimal formation control problem in discrete time in the presence of unknown internal dynamics and a known control coefficient matrix. A modification to the follower's kinematic controller is used to allow the desired formation to change in order to navigate around obstacles. The proposed obstacle avoidance technique modifies the desired separation and bearing of the follower to guide the follower around obstacles. Minimal wireless communication is utilized between the leader and the follower to allow the follower to approximate and compensate for the formation dynamics. All NNs are tuned online, and the stability of the entire formation is demonstrated using Lyapunov methods. Hardware results demonstrate the effectiveness of our approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2012.2200484</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2013-07, Vol.21 (4), p.1407-1415 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2012_2200484 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation methods Artificial neural networks Cost function Feedforward neural networks Followers Formations Kinematics Leader-follower formation control Lyapunov stability neural network (NN) Neural networks nonholonomic mobile robot Nonlinearity Obstacles Operations research Optimal control Robot control Robots Studies Wireless communications |
title | Neural Network-Based Optimal Control of Mobile Robot Formations With Reduced Information Exchange |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network-Based%20Optimal%20Control%20of%20Mobile%20Robot%20Formations%20With%20Reduced%20Information%20Exchange&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Dierks,%20Travis&rft.date=2013-07-01&rft.volume=21&rft.issue=4&rft.spage=1407&rft.epage=1415&rft.pages=1407-1415&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2012.2200484&rft_dat=%3Cproquest_RIE%3E1417885411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369205685&rft_id=info:pmid/&rft_ieee_id=6220872&rfr_iscdi=true |