Active Disturbance Rejection Control for MEMS Gyroscopes
A new control method is presented to drive the drive axis of a Micro-Electro-Mechanical Systems (MEMS) gyroscope to resonance and to regulate the output amplitude of the axis to a fixed level. It is based on a unique active disturbance rejection control (ADRC) strategy, which actively estimates and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2009-11, Vol.17 (6), p.1432-1438 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1438 |
---|---|
container_issue | 6 |
container_start_page | 1432 |
container_title | IEEE transactions on control systems technology |
container_volume | 17 |
creator | Qing Zheng, Qing Zheng Lili Dong, Lili Dong Dae Hui Lee, Dae Hui Lee Zhiqiang Gao, Zhiqiang Gao |
description | A new control method is presented to drive the drive axis of a Micro-Electro-Mechanical Systems (MEMS) gyroscope to resonance and to regulate the output amplitude of the axis to a fixed level. It is based on a unique active disturbance rejection control (ADRC) strategy, which actively estimates and compensates for internal dynamic changes of the drive axis and external disturbances in real time. The stability analysis shows that both the estimation error and the tracking error of the drive axis output are bounded and that the upper bounds of the errors monotonously decrease with the increase of the controller bandwidth. The control system is simulated and tested using a field-programmable-gate-array-based digital implementation on a piezoelectric vibrational gyroscope. Both simulation and experimental results demonstrate that the proposed controller not only drives the drive axis to vibrate along the desired trajectory but also compensates for manufacture imperfections in a robust fashion that makes the performance of the gyroscope insensitive to parameter variations and noises. Such robustness, the fact that the control design does not require an accurate plant model, and the ease of implementation make the proposed solution practical and economic for industrial applications. |
doi_str_mv | 10.1109/TCST.2008.2008638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCST_2008_2008638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4814521</ieee_id><sourcerecordid>36326409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-abd59888b6219d3347cbc6827615f74a5294f178827587e5e46b5ef072ed1973</originalsourceid><addsrcrecordid>eNp9kUtLw0AQgBdRsFZ_gHgJgnpK3Uf2kWOJtQotgs19SbYTSEmzdTcR-u_d2NKDBy-7szPfDMy3CN0SPCEEp895tsonFGP1ewimztCIcK7i8ODnIcaCxYIzcYmuvN9gTBJO5Qipqenqb4heat_1rixaA9EnbCBkbRtltu2cbaLKumg5W66i-d5Zb-wO_DW6qIrGw83xHqP8dZZnb_HiY_6eTRexYYp3cVGueaqUKgUl6ZqxRJrSCEWlILySScFpmlREqpDhSgKHRJQcKiwprEkq2Rg9HcbunP3qwXd6W3sDTVO0YHuvleSYESVEIB__JZlgVCQ4DeD9H3Bje9eGJbQSRHLGJQsQOUAmLOwdVHrn6m3h9ppgPRjXg3E9yNZH46Hn4Ti48KZoKhds1v7USClWPE1J4O4OXA0Ap3Kihi8h7Ae58IaP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861753573</pqid></control><display><type>article</type><title>Active Disturbance Rejection Control for MEMS Gyroscopes</title><source>IEEE Electronic Library (IEL)</source><creator>Qing Zheng, Qing Zheng ; Lili Dong, Lili Dong ; Dae Hui Lee, Dae Hui Lee ; Zhiqiang Gao, Zhiqiang Gao</creator><creatorcontrib>Qing Zheng, Qing Zheng ; Lili Dong, Lili Dong ; Dae Hui Lee, Dae Hui Lee ; Zhiqiang Gao, Zhiqiang Gao</creatorcontrib><description>A new control method is presented to drive the drive axis of a Micro-Electro-Mechanical Systems (MEMS) gyroscope to resonance and to regulate the output amplitude of the axis to a fixed level. It is based on a unique active disturbance rejection control (ADRC) strategy, which actively estimates and compensates for internal dynamic changes of the drive axis and external disturbances in real time. The stability analysis shows that both the estimation error and the tracking error of the drive axis output are bounded and that the upper bounds of the errors monotonously decrease with the increase of the controller bandwidth. The control system is simulated and tested using a field-programmable-gate-array-based digital implementation on a piezoelectric vibrational gyroscope. Both simulation and experimental results demonstrate that the proposed controller not only drives the drive axis to vibrate along the desired trajectory but also compensates for manufacture imperfections in a robust fashion that makes the performance of the gyroscope insensitive to parameter variations and noises. Such robustness, the fact that the control design does not require an accurate plant model, and the ease of implementation make the proposed solution practical and economic for industrial applications.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2008.2008638</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Active control ; Active disturbance rejection control (ADRC) ; Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control system synthesis ; Control systems ; Control theory. Systems ; discrete implementation ; Disturbances ; Drives ; Dynamics ; Error analysis ; Error correction ; Exact sciences and technology ; extended state observer (ESO) ; field-programmable gate array (FPGA) ; Fundamental areas of phenomenology (including applications) ; Gyroscopes ; Mathematical models ; Measurements common to several branches of physics and astronomy ; Metrology, measurements and laboratory procedures ; Micro-Electro-Mechanical Systems (MEMS) gyroscopes ; Microelectromechanical systems ; Micromechanical devices ; Noise robustness ; Physics ; Rejection ; Resonance ; Robust control ; Solid mechanics ; Stability analysis ; Structural and continuum mechanics ; Studies ; Velocity, acceleration and rotation ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>IEEE transactions on control systems technology, 2009-11, Vol.17 (6), p.1432-1438</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-abd59888b6219d3347cbc6827615f74a5294f178827587e5e46b5ef072ed1973</citedby><cites>FETCH-LOGICAL-c385t-abd59888b6219d3347cbc6827615f74a5294f178827587e5e46b5ef072ed1973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4814521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4814521$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22085991$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qing Zheng, Qing Zheng</creatorcontrib><creatorcontrib>Lili Dong, Lili Dong</creatorcontrib><creatorcontrib>Dae Hui Lee, Dae Hui Lee</creatorcontrib><creatorcontrib>Zhiqiang Gao, Zhiqiang Gao</creatorcontrib><title>Active Disturbance Rejection Control for MEMS Gyroscopes</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>A new control method is presented to drive the drive axis of a Micro-Electro-Mechanical Systems (MEMS) gyroscope to resonance and to regulate the output amplitude of the axis to a fixed level. It is based on a unique active disturbance rejection control (ADRC) strategy, which actively estimates and compensates for internal dynamic changes of the drive axis and external disturbances in real time. The stability analysis shows that both the estimation error and the tracking error of the drive axis output are bounded and that the upper bounds of the errors monotonously decrease with the increase of the controller bandwidth. The control system is simulated and tested using a field-programmable-gate-array-based digital implementation on a piezoelectric vibrational gyroscope. Both simulation and experimental results demonstrate that the proposed controller not only drives the drive axis to vibrate along the desired trajectory but also compensates for manufacture imperfections in a robust fashion that makes the performance of the gyroscope insensitive to parameter variations and noises. Such robustness, the fact that the control design does not require an accurate plant model, and the ease of implementation make the proposed solution practical and economic for industrial applications.</description><subject>Active control</subject><subject>Active disturbance rejection control (ADRC)</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>discrete implementation</subject><subject>Disturbances</subject><subject>Drives</subject><subject>Dynamics</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Exact sciences and technology</subject><subject>extended state observer (ESO)</subject><subject>field-programmable gate array (FPGA)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gyroscopes</subject><subject>Mathematical models</subject><subject>Measurements common to several branches of physics and astronomy</subject><subject>Metrology, measurements and laboratory procedures</subject><subject>Micro-Electro-Mechanical Systems (MEMS) gyroscopes</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Noise robustness</subject><subject>Physics</subject><subject>Rejection</subject><subject>Resonance</subject><subject>Robust control</subject><subject>Solid mechanics</subject><subject>Stability analysis</subject><subject>Structural and continuum mechanics</subject><subject>Studies</subject><subject>Velocity, acceleration and rotation</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUtLw0AQgBdRsFZ_gHgJgnpK3Uf2kWOJtQotgs19SbYTSEmzdTcR-u_d2NKDBy-7szPfDMy3CN0SPCEEp895tsonFGP1ewimztCIcK7i8ODnIcaCxYIzcYmuvN9gTBJO5Qipqenqb4heat_1rixaA9EnbCBkbRtltu2cbaLKumg5W66i-d5Zb-wO_DW6qIrGw83xHqP8dZZnb_HiY_6eTRexYYp3cVGueaqUKgUl6ZqxRJrSCEWlILySScFpmlREqpDhSgKHRJQcKiwprEkq2Rg9HcbunP3qwXd6W3sDTVO0YHuvleSYESVEIB__JZlgVCQ4DeD9H3Bje9eGJbQSRHLGJQsQOUAmLOwdVHrn6m3h9ppgPRjXg3E9yNZH46Hn4Ti48KZoKhds1v7USClWPE1J4O4OXA0Ap3Kihi8h7Ae58IaP</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Qing Zheng, Qing Zheng</creator><creator>Lili Dong, Lili Dong</creator><creator>Dae Hui Lee, Dae Hui Lee</creator><creator>Zhiqiang Gao, Zhiqiang Gao</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20091101</creationdate><title>Active Disturbance Rejection Control for MEMS Gyroscopes</title><author>Qing Zheng, Qing Zheng ; Lili Dong, Lili Dong ; Dae Hui Lee, Dae Hui Lee ; Zhiqiang Gao, Zhiqiang Gao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-abd59888b6219d3347cbc6827615f74a5294f178827587e5e46b5ef072ed1973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active control</topic><topic>Active disturbance rejection control (ADRC)</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>discrete implementation</topic><topic>Disturbances</topic><topic>Drives</topic><topic>Dynamics</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Exact sciences and technology</topic><topic>extended state observer (ESO)</topic><topic>field-programmable gate array (FPGA)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gyroscopes</topic><topic>Mathematical models</topic><topic>Measurements common to several branches of physics and astronomy</topic><topic>Metrology, measurements and laboratory procedures</topic><topic>Micro-Electro-Mechanical Systems (MEMS) gyroscopes</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Noise robustness</topic><topic>Physics</topic><topic>Rejection</topic><topic>Resonance</topic><topic>Robust control</topic><topic>Solid mechanics</topic><topic>Stability analysis</topic><topic>Structural and continuum mechanics</topic><topic>Studies</topic><topic>Velocity, acceleration and rotation</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qing Zheng, Qing Zheng</creatorcontrib><creatorcontrib>Lili Dong, Lili Dong</creatorcontrib><creatorcontrib>Dae Hui Lee, Dae Hui Lee</creatorcontrib><creatorcontrib>Zhiqiang Gao, Zhiqiang Gao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qing Zheng, Qing Zheng</au><au>Lili Dong, Lili Dong</au><au>Dae Hui Lee, Dae Hui Lee</au><au>Zhiqiang Gao, Zhiqiang Gao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Disturbance Rejection Control for MEMS Gyroscopes</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2009-11-01</date><risdate>2009</risdate><volume>17</volume><issue>6</issue><spage>1432</spage><epage>1438</epage><pages>1432-1438</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>A new control method is presented to drive the drive axis of a Micro-Electro-Mechanical Systems (MEMS) gyroscope to resonance and to regulate the output amplitude of the axis to a fixed level. It is based on a unique active disturbance rejection control (ADRC) strategy, which actively estimates and compensates for internal dynamic changes of the drive axis and external disturbances in real time. The stability analysis shows that both the estimation error and the tracking error of the drive axis output are bounded and that the upper bounds of the errors monotonously decrease with the increase of the controller bandwidth. The control system is simulated and tested using a field-programmable-gate-array-based digital implementation on a piezoelectric vibrational gyroscope. Both simulation and experimental results demonstrate that the proposed controller not only drives the drive axis to vibrate along the desired trajectory but also compensates for manufacture imperfections in a robust fashion that makes the performance of the gyroscope insensitive to parameter variations and noises. Such robustness, the fact that the control design does not require an accurate plant model, and the ease of implementation make the proposed solution practical and economic for industrial applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCST.2008.2008638</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2009-11, Vol.17 (6), p.1432-1438 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCST_2008_2008638 |
source | IEEE Electronic Library (IEL) |
subjects | Active control Active disturbance rejection control (ADRC) Applied sciences Computer science control theory systems Control system analysis Control system synthesis Control systems Control theory. Systems discrete implementation Disturbances Drives Dynamics Error analysis Error correction Exact sciences and technology extended state observer (ESO) field-programmable gate array (FPGA) Fundamental areas of phenomenology (including applications) Gyroscopes Mathematical models Measurements common to several branches of physics and astronomy Metrology, measurements and laboratory procedures Micro-Electro-Mechanical Systems (MEMS) gyroscopes Microelectromechanical systems Micromechanical devices Noise robustness Physics Rejection Resonance Robust control Solid mechanics Stability analysis Structural and continuum mechanics Studies Velocity, acceleration and rotation Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Active Disturbance Rejection Control for MEMS Gyroscopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Disturbance%20Rejection%20Control%20for%20MEMS%20Gyroscopes&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Qing%20Zheng,%20Qing%20Zheng&rft.date=2009-11-01&rft.volume=17&rft.issue=6&rft.spage=1432&rft.epage=1438&rft.pages=1432-1438&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2008.2008638&rft_dat=%3Cproquest_RIE%3E36326409%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861753573&rft_id=info:pmid/&rft_ieee_id=4814521&rfr_iscdi=true |