Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions

The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2023-12, Vol.10 (6), p.1-20
Hauptverfasser: Alsmadi, Izzat, Ahmad, Kashif, Nazzal, Mahmoud, Alam, Firoj, Al-Fuqaha, Ala, Khreishah, Abdallah, Algosaibi, Abdulelah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 6
container_start_page 1
container_title IEEE transactions on computational social systems
container_volume 10
creator Alsmadi, Izzat
Ahmad, Kashif
Nazzal, Mahmoud
Alam, Firoj
Al-Fuqaha, Ala
Khreishah, Abdallah
Algosaibi, Abdulelah
description The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.
doi_str_mv 10.1109/TCSS.2022.3218743
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSS_2022_3218743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9942953</ieee_id><sourcerecordid>2899467945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHgT8NbO5KRNE-_K5hcMFTdB8CKk6Sl2m-1MOsV_b_eBeHXeA897DjyEnHI25Jzpy9loOh0CAxgK4CqNxQHpgQAdaYhfD__lYzIIYc4Y45AkKbAeecuKL_TB-sou6cPkiZaNp9PGbVdsvxu_oNlqtaycbaumDlc0a1vrFuGCjrHEOmCXbF3QZwxovXun48qj27In5Ki0y4CD_eyTl5vr2egumjze3o-ySeRAizbS3BWFcmWOQoucOaviwoGTKaJKRaIwV1LmwGyiSiuFkIrphIOMmVTOllr0yfnu7so3n2sMrZk3a193Lw0orWOZ6jjpKL6jnG9C8Fiala8-rP8xnJmNRrPRaDYazV5j1znbdSpE_OO7k6ATIX4BMXRtzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899467945</pqid></control><display><type>article</type><title>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</title><source>IEEE Xplore (Online service)</source><creator>Alsmadi, Izzat ; Ahmad, Kashif ; Nazzal, Mahmoud ; Alam, Firoj ; Al-Fuqaha, Ala ; Khreishah, Abdallah ; Algosaibi, Abdulelah</creator><creatorcontrib>Alsmadi, Izzat ; Ahmad, Kashif ; Nazzal, Mahmoud ; Alam, Firoj ; Al-Fuqaha, Ala ; Khreishah, Abdallah ; Algosaibi, Abdulelah</creatorcontrib><description>The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2022.3218743</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adversarial machine learning (AML) ; Algorithms ; Computational modeling ; Data mining ; Digital media ; Fake news ; Hate speech ; linguistics ; Machine learning ; machine learning (ML) ; Natural language processing ; natural language processing (NLP) ; natural languages ; Security ; Sentiment analysis ; Social networking (online) ; Social networks ; Taxonomy ; Text analysis</subject><ispartof>IEEE transactions on computational social systems, 2023-12, Vol.10 (6), p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</citedby><cites>FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</cites><orcidid>0000-0001-7172-1997 ; 0000-0003-3375-0310 ; 0000-0003-1583-713X ; 0000-0002-0931-9275 ; 0000-0001-7832-5081 ; 0000-0002-0903-1204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9942953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9942953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alsmadi, Izzat</creatorcontrib><creatorcontrib>Ahmad, Kashif</creatorcontrib><creatorcontrib>Nazzal, Mahmoud</creatorcontrib><creatorcontrib>Alam, Firoj</creatorcontrib><creatorcontrib>Al-Fuqaha, Ala</creatorcontrib><creatorcontrib>Khreishah, Abdallah</creatorcontrib><creatorcontrib>Algosaibi, Abdulelah</creatorcontrib><title>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.</description><subject>Adversarial machine learning (AML)</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Digital media</subject><subject>Fake news</subject><subject>Hate speech</subject><subject>linguistics</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Natural language processing</subject><subject>natural language processing (NLP)</subject><subject>natural languages</subject><subject>Security</subject><subject>Sentiment analysis</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Taxonomy</subject><subject>Text analysis</subject><issn>2329-924X</issn><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHgT8NbO5KRNE-_K5hcMFTdB8CKk6Sl2m-1MOsV_b_eBeHXeA897DjyEnHI25Jzpy9loOh0CAxgK4CqNxQHpgQAdaYhfD__lYzIIYc4Y45AkKbAeecuKL_TB-sou6cPkiZaNp9PGbVdsvxu_oNlqtaycbaumDlc0a1vrFuGCjrHEOmCXbF3QZwxovXun48qj27In5Ki0y4CD_eyTl5vr2egumjze3o-ySeRAizbS3BWFcmWOQoucOaviwoGTKaJKRaIwV1LmwGyiSiuFkIrphIOMmVTOllr0yfnu7so3n2sMrZk3a193Lw0orWOZ6jjpKL6jnG9C8Fiala8-rP8xnJmNRrPRaDYazV5j1znbdSpE_OO7k6ATIX4BMXRtzA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Alsmadi, Izzat</creator><creator>Ahmad, Kashif</creator><creator>Nazzal, Mahmoud</creator><creator>Alam, Firoj</creator><creator>Al-Fuqaha, Ala</creator><creator>Khreishah, Abdallah</creator><creator>Algosaibi, Abdulelah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7172-1997</orcidid><orcidid>https://orcid.org/0000-0003-3375-0310</orcidid><orcidid>https://orcid.org/0000-0003-1583-713X</orcidid><orcidid>https://orcid.org/0000-0002-0931-9275</orcidid><orcidid>https://orcid.org/0000-0001-7832-5081</orcidid><orcidid>https://orcid.org/0000-0002-0903-1204</orcidid></search><sort><creationdate>20231201</creationdate><title>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</title><author>Alsmadi, Izzat ; Ahmad, Kashif ; Nazzal, Mahmoud ; Alam, Firoj ; Al-Fuqaha, Ala ; Khreishah, Abdallah ; Algosaibi, Abdulelah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adversarial machine learning (AML)</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Digital media</topic><topic>Fake news</topic><topic>Hate speech</topic><topic>linguistics</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Natural language processing</topic><topic>natural language processing (NLP)</topic><topic>natural languages</topic><topic>Security</topic><topic>Sentiment analysis</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Taxonomy</topic><topic>Text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsmadi, Izzat</creatorcontrib><creatorcontrib>Ahmad, Kashif</creatorcontrib><creatorcontrib>Nazzal, Mahmoud</creatorcontrib><creatorcontrib>Alam, Firoj</creatorcontrib><creatorcontrib>Al-Fuqaha, Ala</creatorcontrib><creatorcontrib>Khreishah, Abdallah</creatorcontrib><creatorcontrib>Algosaibi, Abdulelah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alsmadi, Izzat</au><au>Ahmad, Kashif</au><au>Nazzal, Mahmoud</au><au>Alam, Firoj</au><au>Al-Fuqaha, Ala</au><au>Khreishah, Abdallah</au><au>Algosaibi, Abdulelah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>10</volume><issue>6</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>2329-924X</issn><eissn>2329-924X</eissn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2022.3218743</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7172-1997</orcidid><orcidid>https://orcid.org/0000-0003-3375-0310</orcidid><orcidid>https://orcid.org/0000-0003-1583-713X</orcidid><orcidid>https://orcid.org/0000-0002-0931-9275</orcidid><orcidid>https://orcid.org/0000-0001-7832-5081</orcidid><orcidid>https://orcid.org/0000-0002-0903-1204</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2023-12, Vol.10 (6), p.1-20
issn 2329-924X
2329-924X
2373-7476
language eng
recordid cdi_crossref_primary_10_1109_TCSS_2022_3218743
source IEEE Xplore (Online service)
subjects Adversarial machine learning (AML)
Algorithms
Computational modeling
Data mining
Digital media
Fake news
Hate speech
linguistics
Machine learning
machine learning (ML)
Natural language processing
natural language processing (NLP)
natural languages
Security
Sentiment analysis
Social networking (online)
Social networks
Taxonomy
Text analysis
title Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20NLP%20for%20Social%20Network%20Applications:%20Attacks,%20Defenses,%20and%20Research%20Directions&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Alsmadi,%20Izzat&rft.date=2023-12-01&rft.volume=10&rft.issue=6&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=2329-924X&rft.eissn=2329-924X&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2022.3218743&rft_dat=%3Cproquest_RIE%3E2899467945%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899467945&rft_id=info:pmid/&rft_ieee_id=9942953&rfr_iscdi=true