Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions
The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational social systems 2023-12, Vol.10 (6), p.1-20 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on computational social systems |
container_volume | 10 |
creator | Alsmadi, Izzat Ahmad, Kashif Nazzal, Mahmoud Alam, Firoj Al-Fuqaha, Ala Khreishah, Abdallah Algosaibi, Abdulelah |
description | The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work. |
doi_str_mv | 10.1109/TCSS.2022.3218743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSS_2022_3218743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9942953</ieee_id><sourcerecordid>2899467945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gHgT8NbO5KRNE-_K5hcMFTdB8CKk6Sl2m-1MOsV_b_eBeHXeA897DjyEnHI25Jzpy9loOh0CAxgK4CqNxQHpgQAdaYhfD__lYzIIYc4Y45AkKbAeecuKL_TB-sou6cPkiZaNp9PGbVdsvxu_oNlqtaycbaumDlc0a1vrFuGCjrHEOmCXbF3QZwxovXun48qj27In5Ki0y4CD_eyTl5vr2egumjze3o-ySeRAizbS3BWFcmWOQoucOaviwoGTKaJKRaIwV1LmwGyiSiuFkIrphIOMmVTOllr0yfnu7so3n2sMrZk3a193Lw0orWOZ6jjpKL6jnG9C8Fiala8-rP8xnJmNRrPRaDYazV5j1znbdSpE_OO7k6ATIX4BMXRtzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899467945</pqid></control><display><type>article</type><title>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</title><source>IEEE Xplore (Online service)</source><creator>Alsmadi, Izzat ; Ahmad, Kashif ; Nazzal, Mahmoud ; Alam, Firoj ; Al-Fuqaha, Ala ; Khreishah, Abdallah ; Algosaibi, Abdulelah</creator><creatorcontrib>Alsmadi, Izzat ; Ahmad, Kashif ; Nazzal, Mahmoud ; Alam, Firoj ; Al-Fuqaha, Ala ; Khreishah, Abdallah ; Algosaibi, Abdulelah</creatorcontrib><description>The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2022.3218743</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adversarial machine learning (AML) ; Algorithms ; Computational modeling ; Data mining ; Digital media ; Fake news ; Hate speech ; linguistics ; Machine learning ; machine learning (ML) ; Natural language processing ; natural language processing (NLP) ; natural languages ; Security ; Sentiment analysis ; Social networking (online) ; Social networks ; Taxonomy ; Text analysis</subject><ispartof>IEEE transactions on computational social systems, 2023-12, Vol.10 (6), p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</citedby><cites>FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</cites><orcidid>0000-0001-7172-1997 ; 0000-0003-3375-0310 ; 0000-0003-1583-713X ; 0000-0002-0931-9275 ; 0000-0001-7832-5081 ; 0000-0002-0903-1204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9942953$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9942953$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alsmadi, Izzat</creatorcontrib><creatorcontrib>Ahmad, Kashif</creatorcontrib><creatorcontrib>Nazzal, Mahmoud</creatorcontrib><creatorcontrib>Alam, Firoj</creatorcontrib><creatorcontrib>Al-Fuqaha, Ala</creatorcontrib><creatorcontrib>Khreishah, Abdallah</creatorcontrib><creatorcontrib>Algosaibi, Abdulelah</creatorcontrib><title>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.</description><subject>Adversarial machine learning (AML)</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Digital media</subject><subject>Fake news</subject><subject>Hate speech</subject><subject>linguistics</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Natural language processing</subject><subject>natural language processing (NLP)</subject><subject>natural languages</subject><subject>Security</subject><subject>Sentiment analysis</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Taxonomy</subject><subject>Text analysis</subject><issn>2329-924X</issn><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gHgT8NbO5KRNE-_K5hcMFTdB8CKk6Sl2m-1MOsV_b_eBeHXeA897DjyEnHI25Jzpy9loOh0CAxgK4CqNxQHpgQAdaYhfD__lYzIIYc4Y45AkKbAeecuKL_TB-sou6cPkiZaNp9PGbVdsvxu_oNlqtaycbaumDlc0a1vrFuGCjrHEOmCXbF3QZwxovXun48qj27In5Ki0y4CD_eyTl5vr2egumjze3o-ySeRAizbS3BWFcmWOQoucOaviwoGTKaJKRaIwV1LmwGyiSiuFkIrphIOMmVTOllr0yfnu7so3n2sMrZk3a193Lw0orWOZ6jjpKL6jnG9C8Fiala8-rP8xnJmNRrPRaDYazV5j1znbdSpE_OO7k6ATIX4BMXRtzA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Alsmadi, Izzat</creator><creator>Ahmad, Kashif</creator><creator>Nazzal, Mahmoud</creator><creator>Alam, Firoj</creator><creator>Al-Fuqaha, Ala</creator><creator>Khreishah, Abdallah</creator><creator>Algosaibi, Abdulelah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7172-1997</orcidid><orcidid>https://orcid.org/0000-0003-3375-0310</orcidid><orcidid>https://orcid.org/0000-0003-1583-713X</orcidid><orcidid>https://orcid.org/0000-0002-0931-9275</orcidid><orcidid>https://orcid.org/0000-0001-7832-5081</orcidid><orcidid>https://orcid.org/0000-0002-0903-1204</orcidid></search><sort><creationdate>20231201</creationdate><title>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</title><author>Alsmadi, Izzat ; Ahmad, Kashif ; Nazzal, Mahmoud ; Alam, Firoj ; Al-Fuqaha, Ala ; Khreishah, Abdallah ; Algosaibi, Abdulelah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-91cdd8cfbe393b0ca84dc2c67ee87358eb866b20a58fa633680951264068caf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adversarial machine learning (AML)</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Digital media</topic><topic>Fake news</topic><topic>Hate speech</topic><topic>linguistics</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Natural language processing</topic><topic>natural language processing (NLP)</topic><topic>natural languages</topic><topic>Security</topic><topic>Sentiment analysis</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Taxonomy</topic><topic>Text analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsmadi, Izzat</creatorcontrib><creatorcontrib>Ahmad, Kashif</creatorcontrib><creatorcontrib>Nazzal, Mahmoud</creatorcontrib><creatorcontrib>Alam, Firoj</creatorcontrib><creatorcontrib>Al-Fuqaha, Ala</creatorcontrib><creatorcontrib>Khreishah, Abdallah</creatorcontrib><creatorcontrib>Algosaibi, Abdulelah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alsmadi, Izzat</au><au>Ahmad, Kashif</au><au>Nazzal, Mahmoud</au><au>Alam, Firoj</au><au>Al-Fuqaha, Ala</au><au>Khreishah, Abdallah</au><au>Algosaibi, Abdulelah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>10</volume><issue>6</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>2329-924X</issn><eissn>2329-924X</eissn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>The growing use of media has led to the development of several machine learning (ML) and natural language processing (NLP) tools to process the unprecedented amount of social media content to make actionable decisions. However, these ML and NLP algorithms have been widely shown to be vulnerable to adversarial attacks. These vulnerabilities allow adversaries to launch a diversified set of adversarial attacks on these algorithms in different applications of social media text processing. In this article, we provide a comprehensive review of the main approaches for adversarial attacks and defenses in the context of social media applications with a particular focus on key challenges and future research directions. In detail, we cover literature on six key applications: 1) rumors detection; 2) satires detection; 3) clickbaits and spams identification; 4) hate speech detection; 5) misinformation detection; and 6) sentiment analysis. We then highlight the concurrent and anticipated future research questions and provide recommendations and directions for future work.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2022.3218743</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7172-1997</orcidid><orcidid>https://orcid.org/0000-0003-3375-0310</orcidid><orcidid>https://orcid.org/0000-0003-1583-713X</orcidid><orcidid>https://orcid.org/0000-0002-0931-9275</orcidid><orcidid>https://orcid.org/0000-0001-7832-5081</orcidid><orcidid>https://orcid.org/0000-0002-0903-1204</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-924X |
ispartof | IEEE transactions on computational social systems, 2023-12, Vol.10 (6), p.1-20 |
issn | 2329-924X 2329-924X 2373-7476 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSS_2022_3218743 |
source | IEEE Xplore (Online service) |
subjects | Adversarial machine learning (AML) Algorithms Computational modeling Data mining Digital media Fake news Hate speech linguistics Machine learning machine learning (ML) Natural language processing natural language processing (NLP) natural languages Security Sentiment analysis Social networking (online) Social networks Taxonomy Text analysis |
title | Adversarial NLP for Social Network Applications: Attacks, Defenses, and Research Directions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A24%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20NLP%20for%20Social%20Network%20Applications:%20Attacks,%20Defenses,%20and%20Research%20Directions&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Alsmadi,%20Izzat&rft.date=2023-12-01&rft.volume=10&rft.issue=6&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=2329-924X&rft.eissn=2329-924X&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2022.3218743&rft_dat=%3Cproquest_RIE%3E2899467945%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899467945&rft_id=info:pmid/&rft_ieee_id=9942953&rfr_iscdi=true |