Nonlinear Control Design and Stability Analysis of Single Phase Half Bridge Interleaved Buck Shunt Active Power Filter

This paper deals with nonlinear control of a single-phase half-bridge interleaved buck shunt active power filter (HBIB-SAPF) with a nonlinear load. The control objective for the system is twofold: performing power factor correction by compensating for harmonics and reactive current consumed by the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2022-05, Vol.69 (5), p.2117-2128
Hauptverfasser: Echalih, Salwa, Abouloifa, Abdelmajid, Lachkar, Ibtissam, Hekss, Zineb, Aroudi, Abdelali El, Giri, Fouad, Al-Numay, Mohammed S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with nonlinear control of a single-phase half-bridge interleaved buck shunt active power filter (HBIB-SAPF) with a nonlinear load. The control objective for the system is twofold: performing power factor correction by compensating for harmonics and reactive current consumed by the nonlinear load from one hand and tightly regulating the HBIB converter DC capacitor voltage. Both objectives are accomplished using a two-loop nonlinear controller. The inner loop acts on the switching devices so that the active filter current tracks its reference with the aim of ensuring a unity power factor. This loop is tackled using backstepping technique and Lyapunov approach. The outer loop is responsible for regulating the DC capacitor voltage to its desired value, using a PI controller with a pre-filter. The stability analysis of the closed-loop system is formally performed by using the averaging theory. The validity of the designed nonlinear controller is checked by simulations in Matlab/SimpowerSystem showing its robustness and accuracy under various operating conditions.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2022.3147074