Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform

The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-05, Vol.68 (5), p.2051-2059
Hauptverfasser: Xue, Dingli, DeBrunner, Linda S., DeBrunner, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2059
container_issue 5
container_start_page 2051
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 68
creator Xue, Dingli
DeBrunner, Linda S.
DeBrunner, Victor
description The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by 9.09\%-50\% and additions by 1.12\%-51.09\% ) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor.
doi_str_mv 10.1109/TCSI.2021.3061321
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2021_3061321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9366925</ieee_id><sourcerecordid>2515854191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKsPIN4seL01k2yyyaWuhxYKFa3XIc2BbtmTyVbs27tLi1fzM3wzw3wI3QKeAWD5sC4-FzOCCcwo5kAJnKEJMCZSLDA_H3MmU0GJuERXMe4wJhJTmKD3D2f3xtmkaOuucr9lf0hWXV_WuhpazU9b7fuybZInHQdoCP3WJc9lNMH1LpmXIZptrZtkHXQTfRvqa3ThdRXdzalO0dfry7qYp8vV26J4XKaGSNqngsjcG-DeG5lbbb31XBsQnoLZ5NQJwHqT5QIzhjnOpBUZ14w5D9ZKjzmdovvj3i6033sXe7Vr96EZTirCgAmWgYSBgiNlQhtjcF51YfgtHBRgNYpTozg1ilMnccPM3XGmdM7985JyLgmjf5YJafw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515854191</pqid></control><display><type>article</type><title>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creator><creatorcontrib>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creatorcontrib><description><![CDATA[The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by <inline-formula> <tex-math notation="LaTeX">9.09\%-50\% </tex-math></inline-formula> and additions by <inline-formula> <tex-math notation="LaTeX">1.12\%-51.09\% </tex-math></inline-formula>) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2021.3061321</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convolution ; DFT ; DH-HEMTs ; Digital signal processing ; Digital signal processors ; Discrete Fourier transforms ; Discrete Hirschman Transform ; DSP ; FFT ; FIR filter ; Fourier transforms ; FPGA ; Hardware ; Hirschman Optimal Transform ; Microprocessors ; Parameters ; Reduction ; Signal processing algorithms ; Time-frequency analysis ; Transforms</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-05, Vol.68 (5), p.2051-2059</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</citedby><cites>FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</cites><orcidid>0000-0001-9926-8602 ; 0000-0003-2198-2552 ; 0000-0003-1633-7233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9366925$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9366925$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><title>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by <inline-formula> <tex-math notation="LaTeX">9.09\%-50\% </tex-math></inline-formula> and additions by <inline-formula> <tex-math notation="LaTeX">1.12\%-51.09\% </tex-math></inline-formula>) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor.]]></description><subject>Convolution</subject><subject>DFT</subject><subject>DH-HEMTs</subject><subject>Digital signal processing</subject><subject>Digital signal processors</subject><subject>Discrete Fourier transforms</subject><subject>Discrete Hirschman Transform</subject><subject>DSP</subject><subject>FFT</subject><subject>FIR filter</subject><subject>Fourier transforms</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Hirschman Optimal Transform</subject><subject>Microprocessors</subject><subject>Parameters</subject><subject>Reduction</subject><subject>Signal processing algorithms</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWKsPIN4seL01k2yyyaWuhxYKFa3XIc2BbtmTyVbs27tLi1fzM3wzw3wI3QKeAWD5sC4-FzOCCcwo5kAJnKEJMCZSLDA_H3MmU0GJuERXMe4wJhJTmKD3D2f3xtmkaOuucr9lf0hWXV_WuhpazU9b7fuybZInHQdoCP3WJc9lNMH1LpmXIZptrZtkHXQTfRvqa3ThdRXdzalO0dfry7qYp8vV26J4XKaGSNqngsjcG-DeG5lbbb31XBsQnoLZ5NQJwHqT5QIzhjnOpBUZ14w5D9ZKjzmdovvj3i6033sXe7Vr96EZTirCgAmWgYSBgiNlQhtjcF51YfgtHBRgNYpTozg1ilMnccPM3XGmdM7985JyLgmjf5YJafw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Xue, Dingli</creator><creator>DeBrunner, Linda S.</creator><creator>DeBrunner, Victor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></search><sort><creationdate>20210501</creationdate><title>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</title><author>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>DFT</topic><topic>DH-HEMTs</topic><topic>Digital signal processing</topic><topic>Digital signal processors</topic><topic>Discrete Fourier transforms</topic><topic>Discrete Hirschman Transform</topic><topic>DSP</topic><topic>FFT</topic><topic>FIR filter</topic><topic>Fourier transforms</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Hirschman Optimal Transform</topic><topic>Microprocessors</topic><topic>Parameters</topic><topic>Reduction</topic><topic>Signal processing algorithms</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Dingli</au><au>DeBrunner, Linda S.</au><au>DeBrunner, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>2051</spage><epage>2059</epage><pages>2051-2059</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by <inline-formula> <tex-math notation="LaTeX">9.09\%-50\% </tex-math></inline-formula> and additions by <inline-formula> <tex-math notation="LaTeX">1.12\%-51.09\% </tex-math></inline-formula>) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2021.3061321</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2021-05, Vol.68 (5), p.2051-2059
issn 1549-8328
1558-0806
language eng
recordid cdi_crossref_primary_10_1109_TCSI_2021_3061321
source IEEE Electronic Library (IEL)
subjects Convolution
DFT
DH-HEMTs
Digital signal processing
Digital signal processors
Discrete Fourier transforms
Discrete Hirschman Transform
DSP
FFT
FIR filter
Fourier transforms
FPGA
Hardware
Hirschman Optimal Transform
Microprocessors
Parameters
Reduction
Signal processing algorithms
Time-frequency analysis
Transforms
title Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Complexity%20Optimal%20Convolution%20Based%20on%20the%20Discrete%20Hirschman%20Transform&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Xue,%20Dingli&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=2051&rft.epage=2059&rft.pages=2051-2059&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2021.3061321&rft_dat=%3Cproquest_RIE%3E2515854191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515854191&rft_id=info:pmid/&rft_ieee_id=9366925&rfr_iscdi=true