Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform
The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2021-05, Vol.68 (5), p.2051-2059 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2059 |
---|---|
container_issue | 5 |
container_start_page | 2051 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 68 |
creator | Xue, Dingli DeBrunner, Linda S. DeBrunner, Victor |
description | The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by 9.09\%-50\% and additions by 1.12\%-51.09\% ) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor. |
doi_str_mv | 10.1109/TCSI.2021.3061321 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2021_3061321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9366925</ieee_id><sourcerecordid>2515854191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKsPIN4seL01k2yyyaWuhxYKFa3XIc2BbtmTyVbs27tLi1fzM3wzw3wI3QKeAWD5sC4-FzOCCcwo5kAJnKEJMCZSLDA_H3MmU0GJuERXMe4wJhJTmKD3D2f3xtmkaOuucr9lf0hWXV_WuhpazU9b7fuybZInHQdoCP3WJc9lNMH1LpmXIZptrZtkHXQTfRvqa3ThdRXdzalO0dfry7qYp8vV26J4XKaGSNqngsjcG-DeG5lbbb31XBsQnoLZ5NQJwHqT5QIzhjnOpBUZ14w5D9ZKjzmdovvj3i6033sXe7Vr96EZTirCgAmWgYSBgiNlQhtjcF51YfgtHBRgNYpTozg1ilMnccPM3XGmdM7985JyLgmjf5YJafw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515854191</pqid></control><display><type>article</type><title>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creator><creatorcontrib>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</creatorcontrib><description><![CDATA[The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by <inline-formula> <tex-math notation="LaTeX">9.09\%-50\% </tex-math></inline-formula> and additions by <inline-formula> <tex-math notation="LaTeX">1.12\%-51.09\% </tex-math></inline-formula>) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2021.3061321</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Convolution ; DFT ; DH-HEMTs ; Digital signal processing ; Digital signal processors ; Discrete Fourier transforms ; Discrete Hirschman Transform ; DSP ; FFT ; FIR filter ; Fourier transforms ; FPGA ; Hardware ; Hirschman Optimal Transform ; Microprocessors ; Parameters ; Reduction ; Signal processing algorithms ; Time-frequency analysis ; Transforms</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2021-05, Vol.68 (5), p.2051-2059</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</citedby><cites>FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</cites><orcidid>0000-0001-9926-8602 ; 0000-0003-2198-2552 ; 0000-0003-1633-7233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9366925$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9366925$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><title>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by <inline-formula> <tex-math notation="LaTeX">9.09\%-50\% </tex-math></inline-formula> and additions by <inline-formula> <tex-math notation="LaTeX">1.12\%-51.09\% </tex-math></inline-formula>) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor.]]></description><subject>Convolution</subject><subject>DFT</subject><subject>DH-HEMTs</subject><subject>Digital signal processing</subject><subject>Digital signal processors</subject><subject>Discrete Fourier transforms</subject><subject>Discrete Hirschman Transform</subject><subject>DSP</subject><subject>FFT</subject><subject>FIR filter</subject><subject>Fourier transforms</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Hirschman Optimal Transform</subject><subject>Microprocessors</subject><subject>Parameters</subject><subject>Reduction</subject><subject>Signal processing algorithms</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKAzEQhoMoWKsPIN4seL01k2yyyaWuhxYKFa3XIc2BbtmTyVbs27tLi1fzM3wzw3wI3QKeAWD5sC4-FzOCCcwo5kAJnKEJMCZSLDA_H3MmU0GJuERXMe4wJhJTmKD3D2f3xtmkaOuucr9lf0hWXV_WuhpazU9b7fuybZInHQdoCP3WJc9lNMH1LpmXIZptrZtkHXQTfRvqa3ThdRXdzalO0dfry7qYp8vV26J4XKaGSNqngsjcG-DeG5lbbb31XBsQnoLZ5NQJwHqT5QIzhjnOpBUZ14w5D9ZKjzmdovvj3i6033sXe7Vr96EZTirCgAmWgYSBgiNlQhtjcF51YfgtHBRgNYpTozg1ilMnccPM3XGmdM7985JyLgmjf5YJafw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Xue, Dingli</creator><creator>DeBrunner, Linda S.</creator><creator>DeBrunner, Victor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></search><sort><creationdate>20210501</creationdate><title>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</title><author>Xue, Dingli ; DeBrunner, Linda S. ; DeBrunner, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8297fc16ffc97dadfdf6ac18f31cb73e810ab47805506049d846a55ef1dd9f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>DFT</topic><topic>DH-HEMTs</topic><topic>Digital signal processing</topic><topic>Digital signal processors</topic><topic>Discrete Fourier transforms</topic><topic>Discrete Hirschman Transform</topic><topic>DSP</topic><topic>FFT</topic><topic>FIR filter</topic><topic>Fourier transforms</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Hirschman Optimal Transform</topic><topic>Microprocessors</topic><topic>Parameters</topic><topic>Reduction</topic><topic>Signal processing algorithms</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Dingli</creatorcontrib><creatorcontrib>DeBrunner, Linda S.</creatorcontrib><creatorcontrib>DeBrunner, Victor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Dingli</au><au>DeBrunner, Linda S.</au><au>DeBrunner, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>68</volume><issue>5</issue><spage>2051</spage><epage>2059</epage><pages>2051-2059</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[The Discrete Hirschman Transform (DHT) is more computationally attractive than the Discrete Fourier Transform (DFT). Based on its derived linear convolution, we have confirmed that the DHT-based convolution filter shows its superiority in reducing computations conditionally, while compared with the conventional DFT-based convolution filter in our previous work. Since the DHT-based convolution has many configurations depending on parameter choices, we conjecture that there should be an optimal case for the largest reduction in computations. In this paper, for the DHT-based convolution, we express the requirement in real computations and propose an approach of how to determine the optimal parameters to reduce computations. We further compare the computational load of the optimal DHT-based convolution with that of other popular convolutions. Moreover, its reduction in clock cycles has also been estimated using a Digital Signal Processor (DSP) TMS320C5545. Results indicate that the optimal DHT-based convolution can reduce real computations (multiplications by <inline-formula> <tex-math notation="LaTeX">9.09\%-50\% </tex-math></inline-formula> and additions by <inline-formula> <tex-math notation="LaTeX">1.12\%-51.09\% </tex-math></inline-formula>) and clock cycles, according to the input length and filter size, except for some cases with identical performance to the radix-2 FFT-based competitor.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2021.3061321</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9926-8602</orcidid><orcidid>https://orcid.org/0000-0003-2198-2552</orcidid><orcidid>https://orcid.org/0000-0003-1633-7233</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2021-05, Vol.68 (5), p.2051-2059 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSI_2021_3061321 |
source | IEEE Electronic Library (IEL) |
subjects | Convolution DFT DH-HEMTs Digital signal processing Digital signal processors Discrete Fourier transforms Discrete Hirschman Transform DSP FFT FIR filter Fourier transforms FPGA Hardware Hirschman Optimal Transform Microprocessors Parameters Reduction Signal processing algorithms Time-frequency analysis Transforms |
title | Reduced Complexity Optimal Convolution Based on the Discrete Hirschman Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Complexity%20Optimal%20Convolution%20Based%20on%20the%20Discrete%20Hirschman%20Transform&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Xue,%20Dingli&rft.date=2021-05-01&rft.volume=68&rft.issue=5&rft.spage=2051&rft.epage=2059&rft.pages=2051-2059&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2021.3061321&rft_dat=%3Cproquest_RIE%3E2515854191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515854191&rft_id=info:pmid/&rft_ieee_id=9366925&rfr_iscdi=true |