A Sub- \mu W Reconfigurable Front-End for Invasive Neural Recording That Exploits the Spectral Characteristics of the Wideband Neural Signal
This paper presents a sub- \mu \text{W} ac-coupled reconfigurable front-end for invasive wideband neural signal recording. The proposed topology embeds filtering capabilities enabling the selection of different frequency bands inside the neural signal spectrum. Power consumption is optimized by def...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2020-05, Vol.67 (5), p.1426-1437 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1437 |
---|---|
container_issue | 5 |
container_start_page | 1426 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 67 |
creator | Valtierra, Jose Luis Delgado-Restituto, Manuel Fiorelli, Rafaella Rodriguez-Vazquez, Angel |
description | This paper presents a sub- \mu \text{W} ac-coupled reconfigurable front-end for invasive wideband neural signal recording. The proposed topology embeds filtering capabilities enabling the selection of different frequency bands inside the neural signal spectrum. Power consumption is optimized by defining specific noise targets for each sub-band. These targets take into account the spectral characteristics of wideband neural signals: local field potentials (LFP) exhibit \mathrm {1/f^{x}} magnitude scaling while action potentials (AP) show uniform magnitude across frequency. Additionally, noise targets also consider electrode noise and the spectral distribution of noise sources in the circuit. An experimentally verified prototype designed in a standard 180 nm CMOS process draws 815 nW from a 1 V supply. The front-end is able to select among four different frequency bands (modes) up to 5 kHz. The measured input-referred spot-noise at 500 Hz in the LFP mode (1 Hz - 700 Hz) is 55~nV/\sqrt {Hz} while the integrated noise in the AP mode (200 Hz - 5 kHz) is 4.1~\mu Vrms . The proposed front-end achieves sub- \mu \text{W} operation without penalizing other specifications such as input swing, common-mode or power-supply rejection ratios. It reduces the power consumption of neural front-ends with spectral selectivity by 6.1\times and, compared with conventional wideband front-ends, it obtains a reduction of 2.5\times . |
doi_str_mv | 10.1109/TCSI.2020.2968087 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2020_2968087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8974208</ieee_id><sourcerecordid>10_1109_TCSI_2020_2968087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-3742a8412f265f361da83322d9811042ed01c281421f439e8504596795182d1e3</originalsourceid><addsrcrecordid>eNo9kN1KwzAUx4MoOKcPIN7kBTrz1S65HGXTwVCwk90IJUtPtkjXjiQTfQcf2nYbXp1z-H9w-CF0T8mIUqIel3kxHzHCyIipTBI5vkADmqYyIZJkl_0uVCI5k9foJoRPQpginA7Q7wQXh3WCP3YHvMJvYNrGus3B63UNeObbJibTpsK29XjefOngvgC_QKfXR7OvXLPBy62OePq9r1sXA45bwMUeTOxN-VZ7bSJ4F6IzAbf2qK9cBWvdFZ-7CrdpdH2LrqyuA9yd5xC9z6bL_DlZvD7N88kiMSxLY8LHgmkpKLPdaXlGKy05Z6xSsmMhGFSEGiapYNQKrkCmRKQqG6uUSlZR4ENET73GtyF4sOXeu532PyUlZY-z7HGWPc7yjLPLPJwyDgD-_VJ1vxDJ_wBwSnCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Sub- \mu W Reconfigurable Front-End for Invasive Neural Recording That Exploits the Spectral Characteristics of the Wideband Neural Signal</title><source>IEEE Electronic Library (IEL)</source><creator>Valtierra, Jose Luis ; Delgado-Restituto, Manuel ; Fiorelli, Rafaella ; Rodriguez-Vazquez, Angel</creator><creatorcontrib>Valtierra, Jose Luis ; Delgado-Restituto, Manuel ; Fiorelli, Rafaella ; Rodriguez-Vazquez, Angel</creatorcontrib><description><![CDATA[This paper presents a sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> ac-coupled reconfigurable front-end for invasive wideband neural signal recording. The proposed topology embeds filtering capabilities enabling the selection of different frequency bands inside the neural signal spectrum. Power consumption is optimized by defining specific noise targets for each sub-band. These targets take into account the spectral characteristics of wideband neural signals: local field potentials (LFP) exhibit <inline-formula> <tex-math notation="LaTeX">\mathrm {1/f^{x}} </tex-math></inline-formula> magnitude scaling while action potentials (AP) show uniform magnitude across frequency. Additionally, noise targets also consider electrode noise and the spectral distribution of noise sources in the circuit. An experimentally verified prototype designed in a standard 180 nm CMOS process draws 815 nW from a 1 V supply. The front-end is able to select among four different frequency bands (modes) up to 5 kHz. The measured input-referred spot-noise at 500 Hz in the LFP mode (1 Hz - 700 Hz) is <inline-formula> <tex-math notation="LaTeX">55~nV/\sqrt {Hz} </tex-math></inline-formula> while the integrated noise in the AP mode (200 Hz - 5 kHz) is <inline-formula> <tex-math notation="LaTeX">4.1~\mu Vrms </tex-math></inline-formula>. The proposed front-end achieves sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> operation without penalizing other specifications such as input swing, common-mode or power-supply rejection ratios. It reduces the power consumption of neural front-ends with spectral selectivity by <inline-formula> <tex-math notation="LaTeX">6.1\times </tex-math></inline-formula> and, compared with conventional wideband front-ends, it obtains a reduction of <inline-formula> <tex-math notation="LaTeX">2.5\times </tex-math></inline-formula>.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2020.2968087</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Action potentials ; Electrodes ; fast ripples ; Hafnium oxide ; high-frequency oscillations ; local field potentials ; Neural front-end ; neural probing ; reconfigurable front-end ; spectral selectivity ; Thermal noise ; Topology ; ultra low-power ; Wideband ; wideband neural recording</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2020-05, Vol.67 (5), p.1426-1437</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-3742a8412f265f361da83322d9811042ed01c281421f439e8504596795182d1e3</citedby><cites>FETCH-LOGICAL-c265t-3742a8412f265f361da83322d9811042ed01c281421f439e8504596795182d1e3</cites><orcidid>0000-0002-7707-0897 ; 0000-0002-1006-5241 ; 0000-0001-9434-4397 ; 0000-0002-4134-6425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8974208$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8974208$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valtierra, Jose Luis</creatorcontrib><creatorcontrib>Delgado-Restituto, Manuel</creatorcontrib><creatorcontrib>Fiorelli, Rafaella</creatorcontrib><creatorcontrib>Rodriguez-Vazquez, Angel</creatorcontrib><title>A Sub- \mu W Reconfigurable Front-End for Invasive Neural Recording That Exploits the Spectral Characteristics of the Wideband Neural Signal</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[This paper presents a sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> ac-coupled reconfigurable front-end for invasive wideband neural signal recording. The proposed topology embeds filtering capabilities enabling the selection of different frequency bands inside the neural signal spectrum. Power consumption is optimized by defining specific noise targets for each sub-band. These targets take into account the spectral characteristics of wideband neural signals: local field potentials (LFP) exhibit <inline-formula> <tex-math notation="LaTeX">\mathrm {1/f^{x}} </tex-math></inline-formula> magnitude scaling while action potentials (AP) show uniform magnitude across frequency. Additionally, noise targets also consider electrode noise and the spectral distribution of noise sources in the circuit. An experimentally verified prototype designed in a standard 180 nm CMOS process draws 815 nW from a 1 V supply. The front-end is able to select among four different frequency bands (modes) up to 5 kHz. The measured input-referred spot-noise at 500 Hz in the LFP mode (1 Hz - 700 Hz) is <inline-formula> <tex-math notation="LaTeX">55~nV/\sqrt {Hz} </tex-math></inline-formula> while the integrated noise in the AP mode (200 Hz - 5 kHz) is <inline-formula> <tex-math notation="LaTeX">4.1~\mu Vrms </tex-math></inline-formula>. The proposed front-end achieves sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> operation without penalizing other specifications such as input swing, common-mode or power-supply rejection ratios. It reduces the power consumption of neural front-ends with spectral selectivity by <inline-formula> <tex-math notation="LaTeX">6.1\times </tex-math></inline-formula> and, compared with conventional wideband front-ends, it obtains a reduction of <inline-formula> <tex-math notation="LaTeX">2.5\times </tex-math></inline-formula>.]]></description><subject>Action potentials</subject><subject>Electrodes</subject><subject>fast ripples</subject><subject>Hafnium oxide</subject><subject>high-frequency oscillations</subject><subject>local field potentials</subject><subject>Neural front-end</subject><subject>neural probing</subject><subject>reconfigurable front-end</subject><subject>spectral selectivity</subject><subject>Thermal noise</subject><subject>Topology</subject><subject>ultra low-power</subject><subject>Wideband</subject><subject>wideband neural recording</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1KwzAUx4MoOKcPIN7kBTrz1S65HGXTwVCwk90IJUtPtkjXjiQTfQcf2nYbXp1z-H9w-CF0T8mIUqIel3kxHzHCyIipTBI5vkADmqYyIZJkl_0uVCI5k9foJoRPQpginA7Q7wQXh3WCP3YHvMJvYNrGus3B63UNeObbJibTpsK29XjefOngvgC_QKfXR7OvXLPBy62OePq9r1sXA45bwMUeTOxN-VZ7bSJ4F6IzAbf2qK9cBWvdFZ-7CrdpdH2LrqyuA9yd5xC9z6bL_DlZvD7N88kiMSxLY8LHgmkpKLPdaXlGKy05Z6xSsmMhGFSEGiapYNQKrkCmRKQqG6uUSlZR4ENET73GtyF4sOXeu532PyUlZY-z7HGWPc7yjLPLPJwyDgD-_VJ1vxDJ_wBwSnCw</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Valtierra, Jose Luis</creator><creator>Delgado-Restituto, Manuel</creator><creator>Fiorelli, Rafaella</creator><creator>Rodriguez-Vazquez, Angel</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7707-0897</orcidid><orcidid>https://orcid.org/0000-0002-1006-5241</orcidid><orcidid>https://orcid.org/0000-0001-9434-4397</orcidid><orcidid>https://orcid.org/0000-0002-4134-6425</orcidid></search><sort><creationdate>202005</creationdate><title>A Sub- \mu W Reconfigurable Front-End for Invasive Neural Recording That Exploits the Spectral Characteristics of the Wideband Neural Signal</title><author>Valtierra, Jose Luis ; Delgado-Restituto, Manuel ; Fiorelli, Rafaella ; Rodriguez-Vazquez, Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-3742a8412f265f361da83322d9811042ed01c281421f439e8504596795182d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Action potentials</topic><topic>Electrodes</topic><topic>fast ripples</topic><topic>Hafnium oxide</topic><topic>high-frequency oscillations</topic><topic>local field potentials</topic><topic>Neural front-end</topic><topic>neural probing</topic><topic>reconfigurable front-end</topic><topic>spectral selectivity</topic><topic>Thermal noise</topic><topic>Topology</topic><topic>ultra low-power</topic><topic>Wideband</topic><topic>wideband neural recording</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valtierra, Jose Luis</creatorcontrib><creatorcontrib>Delgado-Restituto, Manuel</creatorcontrib><creatorcontrib>Fiorelli, Rafaella</creatorcontrib><creatorcontrib>Rodriguez-Vazquez, Angel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valtierra, Jose Luis</au><au>Delgado-Restituto, Manuel</au><au>Fiorelli, Rafaella</au><au>Rodriguez-Vazquez, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Sub- \mu W Reconfigurable Front-End for Invasive Neural Recording That Exploits the Spectral Characteristics of the Wideband Neural Signal</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2020-05</date><risdate>2020</risdate><volume>67</volume><issue>5</issue><spage>1426</spage><epage>1437</epage><pages>1426-1437</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[This paper presents a sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> ac-coupled reconfigurable front-end for invasive wideband neural signal recording. The proposed topology embeds filtering capabilities enabling the selection of different frequency bands inside the neural signal spectrum. Power consumption is optimized by defining specific noise targets for each sub-band. These targets take into account the spectral characteristics of wideband neural signals: local field potentials (LFP) exhibit <inline-formula> <tex-math notation="LaTeX">\mathrm {1/f^{x}} </tex-math></inline-formula> magnitude scaling while action potentials (AP) show uniform magnitude across frequency. Additionally, noise targets also consider electrode noise and the spectral distribution of noise sources in the circuit. An experimentally verified prototype designed in a standard 180 nm CMOS process draws 815 nW from a 1 V supply. The front-end is able to select among four different frequency bands (modes) up to 5 kHz. The measured input-referred spot-noise at 500 Hz in the LFP mode (1 Hz - 700 Hz) is <inline-formula> <tex-math notation="LaTeX">55~nV/\sqrt {Hz} </tex-math></inline-formula> while the integrated noise in the AP mode (200 Hz - 5 kHz) is <inline-formula> <tex-math notation="LaTeX">4.1~\mu Vrms </tex-math></inline-formula>. The proposed front-end achieves sub-<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> operation without penalizing other specifications such as input swing, common-mode or power-supply rejection ratios. It reduces the power consumption of neural front-ends with spectral selectivity by <inline-formula> <tex-math notation="LaTeX">6.1\times </tex-math></inline-formula> and, compared with conventional wideband front-ends, it obtains a reduction of <inline-formula> <tex-math notation="LaTeX">2.5\times </tex-math></inline-formula>.]]></abstract><pub>IEEE</pub><doi>10.1109/TCSI.2020.2968087</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7707-0897</orcidid><orcidid>https://orcid.org/0000-0002-1006-5241</orcidid><orcidid>https://orcid.org/0000-0001-9434-4397</orcidid><orcidid>https://orcid.org/0000-0002-4134-6425</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2020-05, Vol.67 (5), p.1426-1437 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSI_2020_2968087 |
source | IEEE Electronic Library (IEL) |
subjects | Action potentials Electrodes fast ripples Hafnium oxide high-frequency oscillations local field potentials Neural front-end neural probing reconfigurable front-end spectral selectivity Thermal noise Topology ultra low-power Wideband wideband neural recording |
title | A Sub- \mu W Reconfigurable Front-End for Invasive Neural Recording That Exploits the Spectral Characteristics of the Wideband Neural Signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A32%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Sub-%20%5Cmu%20W%20Reconfigurable%20Front-End%20for%20Invasive%20Neural%20Recording%20That%20Exploits%20the%20Spectral%20Characteristics%20of%20the%20Wideband%20Neural%20Signal&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Valtierra,%20Jose%20Luis&rft.date=2020-05&rft.volume=67&rft.issue=5&rft.spage=1426&rft.epage=1437&rft.pages=1426-1437&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2020.2968087&rft_dat=%3Ccrossref_RIE%3E10_1109_TCSI_2020_2968087%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8974208&rfr_iscdi=true |