Random Fourier Filters Under Maximum Correntropy Criterion

Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2018-10, Vol.65 (10), p.3390-3403
Hauptverfasser: Wang, Shiyuan, Dang, Lujuan, Chen, Badong, Duan, Shukai, Wang, Lidan, Tse, Chi K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3403
container_issue 10
container_start_page 3390
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 65
creator Wang, Shiyuan
Dang, Lujuan
Chen, Badong
Duan, Shukai
Wang, Lidan
Tse, Chi K.
description Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises.
doi_str_mv 10.1109/TCSI.2018.2825241
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2018_2825241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8345754</ieee_id><sourcerecordid>2117159792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7cmf3IrjcJVgsVQdvzko8NpDTZupuC_fduaPE0M_DMzMtDyD3QDIDqp3XxvcyQgspQoUAOF2QGQqiUKiovp57rVDFU1-QmhC2lqCmDGXn-KofG9cnCHXxnfbLodqP1IdkMTZw-yt-uP_RJ4by3w-jd_pgUvotE54ZbctWWu2DvznVONovXdfGerj7flsXLKq1RszFFTpu2knklZcNk2zIE1EpXopLYYswhKa8ZayhwsFaqXDTcWl5qhXXLK87m5PF0d-_dz8GG0Wxj2CG-NAiQg9C5xkjBiaq9C8Hb1ux915f-aICaSZGZFJlJkTkrijsPp53OWvvPK8ZFLjj7A5ZSYQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117159792</pqid></control><display><type>article</type><title>Random Fourier Filters Under Maximum Correntropy Criterion</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shiyuan ; Dang, Lujuan ; Chen, Badong ; Duan, Shukai ; Wang, Lidan ; Tse, Chi K.</creator><creatorcontrib>Wang, Shiyuan ; Dang, Lujuan ; Chen, Badong ; Duan, Shukai ; Wang, Lidan ; Tse, Chi K.</creatorcontrib><description>Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2018.2825241</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Convergence ; Cost function ; Filtration ; Fourier transforms ; maximum correntropy ; Mean square errors ; Outliers (statistics) ; Performance degradation ; random feature space ; Random Fourier adaptive filters ; Random noise ; random-batch ; Robustness ; Stability ; Stability criteria</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3390-3403</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</citedby><cites>FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</cites><orcidid>0000-0003-1710-3818 ; 0000-0002-5028-5839 ; 0000-0002-0462-3999 ; 0000-0003-0730-4202 ; 0000-0002-0040-3796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8345754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8345754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shiyuan</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><creatorcontrib>Tse, Chi K.</creatorcontrib><title>Random Fourier Filters Under Maximum Correntropy Criterion</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises.</description><subject>Adaptive filters</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Filtration</subject><subject>Fourier transforms</subject><subject>maximum correntropy</subject><subject>Mean square errors</subject><subject>Outliers (statistics)</subject><subject>Performance degradation</subject><subject>random feature space</subject><subject>Random Fourier adaptive filters</subject><subject>Random noise</subject><subject>random-batch</subject><subject>Robustness</subject><subject>Stability</subject><subject>Stability criteria</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7cmf3IrjcJVgsVQdvzko8NpDTZupuC_fduaPE0M_DMzMtDyD3QDIDqp3XxvcyQgspQoUAOF2QGQqiUKiovp57rVDFU1-QmhC2lqCmDGXn-KofG9cnCHXxnfbLodqP1IdkMTZw-yt-uP_RJ4by3w-jd_pgUvotE54ZbctWWu2DvznVONovXdfGerj7flsXLKq1RszFFTpu2knklZcNk2zIE1EpXopLYYswhKa8ZayhwsFaqXDTcWl5qhXXLK87m5PF0d-_dz8GG0Wxj2CG-NAiQg9C5xkjBiaq9C8Hb1ux915f-aICaSZGZFJlJkTkrijsPp53OWvvPK8ZFLjj7A5ZSYQE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wang, Shiyuan</creator><creator>Dang, Lujuan</creator><creator>Chen, Badong</creator><creator>Duan, Shukai</creator><creator>Wang, Lidan</creator><creator>Tse, Chi K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0002-5028-5839</orcidid><orcidid>https://orcid.org/0000-0002-0462-3999</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid></search><sort><creationdate>20181001</creationdate><title>Random Fourier Filters Under Maximum Correntropy Criterion</title><author>Wang, Shiyuan ; Dang, Lujuan ; Chen, Badong ; Duan, Shukai ; Wang, Lidan ; Tse, Chi K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive filters</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Filtration</topic><topic>Fourier transforms</topic><topic>maximum correntropy</topic><topic>Mean square errors</topic><topic>Outliers (statistics)</topic><topic>Performance degradation</topic><topic>random feature space</topic><topic>Random Fourier adaptive filters</topic><topic>Random noise</topic><topic>random-batch</topic><topic>Robustness</topic><topic>Stability</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shiyuan</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><creatorcontrib>Tse, Chi K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shiyuan</au><au>Dang, Lujuan</au><au>Chen, Badong</au><au>Duan, Shukai</au><au>Wang, Lidan</au><au>Tse, Chi K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Fourier Filters Under Maximum Correntropy Criterion</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>3390</spage><epage>3403</epage><pages>3390-3403</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2018.2825241</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0002-5028-5839</orcidid><orcidid>https://orcid.org/0000-0002-0462-3999</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3390-3403
issn 1549-8328
1558-0806
language eng
recordid cdi_crossref_primary_10_1109_TCSI_2018_2825241
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Convergence
Cost function
Filtration
Fourier transforms
maximum correntropy
Mean square errors
Outliers (statistics)
Performance degradation
random feature space
Random Fourier adaptive filters
Random noise
random-batch
Robustness
Stability
Stability criteria
title Random Fourier Filters Under Maximum Correntropy Criterion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Fourier%20Filters%20Under%20Maximum%20Correntropy%20Criterion&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Wang,%20Shiyuan&rft.date=2018-10-01&rft.volume=65&rft.issue=10&rft.spage=3390&rft.epage=3403&rft.pages=3390-3403&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2018.2825241&rft_dat=%3Cproquest_RIE%3E2117159792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117159792&rft_id=info:pmid/&rft_ieee_id=8345754&rfr_iscdi=true