Random Fourier Filters Under Maximum Correntropy Criterion
Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-k...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2018-10, Vol.65 (10), p.3390-3403 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3403 |
---|---|
container_issue | 10 |
container_start_page | 3390 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 65 |
creator | Wang, Shiyuan Dang, Lujuan Chen, Badong Duan, Shukai Wang, Lidan Tse, Chi K. |
description | Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises. |
doi_str_mv | 10.1109/TCSI.2018.2825241 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2018_2825241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8345754</ieee_id><sourcerecordid>2117159792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7cmf3IrjcJVgsVQdvzko8NpDTZupuC_fduaPE0M_DMzMtDyD3QDIDqp3XxvcyQgspQoUAOF2QGQqiUKiovp57rVDFU1-QmhC2lqCmDGXn-KofG9cnCHXxnfbLodqP1IdkMTZw-yt-uP_RJ4by3w-jd_pgUvotE54ZbctWWu2DvznVONovXdfGerj7flsXLKq1RszFFTpu2knklZcNk2zIE1EpXopLYYswhKa8ZayhwsFaqXDTcWl5qhXXLK87m5PF0d-_dz8GG0Wxj2CG-NAiQg9C5xkjBiaq9C8Hb1ux915f-aICaSZGZFJlJkTkrijsPp53OWvvPK8ZFLjj7A5ZSYQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117159792</pqid></control><display><type>article</type><title>Random Fourier Filters Under Maximum Correntropy Criterion</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shiyuan ; Dang, Lujuan ; Chen, Badong ; Duan, Shukai ; Wang, Lidan ; Tse, Chi K.</creator><creatorcontrib>Wang, Shiyuan ; Dang, Lujuan ; Chen, Badong ; Duan, Shukai ; Wang, Lidan ; Tse, Chi K.</creatorcontrib><description>Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2018.2825241</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Convergence ; Cost function ; Filtration ; Fourier transforms ; maximum correntropy ; Mean square errors ; Outliers (statistics) ; Performance degradation ; random feature space ; Random Fourier adaptive filters ; Random noise ; random-batch ; Robustness ; Stability ; Stability criteria</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3390-3403</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</citedby><cites>FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</cites><orcidid>0000-0003-1710-3818 ; 0000-0002-5028-5839 ; 0000-0002-0462-3999 ; 0000-0003-0730-4202 ; 0000-0002-0040-3796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8345754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8345754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shiyuan</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><creatorcontrib>Tse, Chi K.</creatorcontrib><title>Random Fourier Filters Under Maximum Correntropy Criterion</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises.</description><subject>Adaptive filters</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Filtration</subject><subject>Fourier transforms</subject><subject>maximum correntropy</subject><subject>Mean square errors</subject><subject>Outliers (statistics)</subject><subject>Performance degradation</subject><subject>random feature space</subject><subject>Random Fourier adaptive filters</subject><subject>Random noise</subject><subject>random-batch</subject><subject>Robustness</subject><subject>Stability</subject><subject>Stability criteria</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7cmf3IrjcJVgsVQdvzko8NpDTZupuC_fduaPE0M_DMzMtDyD3QDIDqp3XxvcyQgspQoUAOF2QGQqiUKiovp57rVDFU1-QmhC2lqCmDGXn-KofG9cnCHXxnfbLodqP1IdkMTZw-yt-uP_RJ4by3w-jd_pgUvotE54ZbctWWu2DvznVONovXdfGerj7flsXLKq1RszFFTpu2knklZcNk2zIE1EpXopLYYswhKa8ZayhwsFaqXDTcWl5qhXXLK87m5PF0d-_dz8GG0Wxj2CG-NAiQg9C5xkjBiaq9C8Hb1ux915f-aICaSZGZFJlJkTkrijsPp53OWvvPK8ZFLjj7A5ZSYQE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wang, Shiyuan</creator><creator>Dang, Lujuan</creator><creator>Chen, Badong</creator><creator>Duan, Shukai</creator><creator>Wang, Lidan</creator><creator>Tse, Chi K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0002-5028-5839</orcidid><orcidid>https://orcid.org/0000-0002-0462-3999</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid></search><sort><creationdate>20181001</creationdate><title>Random Fourier Filters Under Maximum Correntropy Criterion</title><author>Wang, Shiyuan ; Dang, Lujuan ; Chen, Badong ; Duan, Shukai ; Wang, Lidan ; Tse, Chi K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-240dfb67b66d36ff3212989b5b62f2029604c33d0141ee6875d4ee4a982cf4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive filters</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Filtration</topic><topic>Fourier transforms</topic><topic>maximum correntropy</topic><topic>Mean square errors</topic><topic>Outliers (statistics)</topic><topic>Performance degradation</topic><topic>random feature space</topic><topic>Random Fourier adaptive filters</topic><topic>Random noise</topic><topic>random-batch</topic><topic>Robustness</topic><topic>Stability</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shiyuan</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><creatorcontrib>Duan, Shukai</creatorcontrib><creatorcontrib>Wang, Lidan</creatorcontrib><creatorcontrib>Tse, Chi K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shiyuan</au><au>Dang, Lujuan</au><au>Chen, Badong</au><au>Duan, Shukai</au><au>Wang, Lidan</au><au>Tse, Chi K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Fourier Filters Under Maximum Correntropy Criterion</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>3390</spage><epage>3403</epage><pages>3390-3403</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Random Fourier adaptive filters (RFAFs) project the original data into a high-dimensional random Fourier feature space (RFFS) such that the network structure of filters is fixed while achieving similar performance with kernel adaptive filters. The commonly used error criterion in RFAFs is the well-known minimum mean-square error (MMSE) criterion, which is optimal only under the Gaussian noise assumption. However, the MMSE criterion suffers from instability and performance deterioration in the presence of non-Gaussian noises. To improve the robustness of RFAFs against large outliers, the maximum correntropy criterion (MCC) is applied to RFFS, generating a novel robust random Fourier filter under maximum correntropy (RFFMC). To further improve the filtering accuracy, a random-batch RFFMC (RB-RFFMC) is also presented. In addition, a theoretical analysis on the convergence characteristics and steady-state excess mean-square error of RFFMC and RB-RFFMC is provided to validate their superior performance. Simulation results illustrate that RFFMC and its extension provide desirable filtering performance from the aspects of filtering accuracy and robustness, especially in the presence of impulsive noises.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2018.2825241</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0002-5028-5839</orcidid><orcidid>https://orcid.org/0000-0002-0462-3999</orcidid><orcidid>https://orcid.org/0000-0003-0730-4202</orcidid><orcidid>https://orcid.org/0000-0002-0040-3796</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3390-3403 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSI_2018_2825241 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Convergence Cost function Filtration Fourier transforms maximum correntropy Mean square errors Outliers (statistics) Performance degradation random feature space Random Fourier adaptive filters Random noise random-batch Robustness Stability Stability criteria |
title | Random Fourier Filters Under Maximum Correntropy Criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Fourier%20Filters%20Under%20Maximum%20Correntropy%20Criterion&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Wang,%20Shiyuan&rft.date=2018-10-01&rft.volume=65&rft.issue=10&rft.spage=3390&rft.epage=3403&rft.pages=3390-3403&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2018.2825241&rft_dat=%3Cproquest_RIE%3E2117159792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117159792&rft_id=info:pmid/&rft_ieee_id=8345754&rfr_iscdi=true |