Design Techniques for High-Speed Multi-Level Viterbi Detectors and Trellis-Coded-Modulation Decoders

The implementation of a 25.6-Gb/s four-level pulse-amplitude-modulation (4-PAM) reduced-state sliding-block Viterbi detector (VD) is presented. The power consumption of the VD is 105mW at a supply voltage of 0.7 V, corresponding to an energy efficiency of 4.1 pJ/b. A data rate of 30.4 Gb/s is achiev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2018-10, Vol.65 (10), p.3529-3542
Hauptverfasser: Yueksel, Hazar, Braendli, Matthias, Burg, Andreas, Cherubini, Giovanni, Cideciyan, Roy D., Francese, Pier Andrea, Furrer, Simeon, Kossel, Marcel, Kull, Lukas, Luu, Danny, Menolfi, Christian, Morf, Thomas, Toifl, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3542
container_issue 10
container_start_page 3529
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 65
creator Yueksel, Hazar
Braendli, Matthias
Burg, Andreas
Cherubini, Giovanni
Cideciyan, Roy D.
Francese, Pier Andrea
Furrer, Simeon
Kossel, Marcel
Kull, Lukas
Luu, Danny
Menolfi, Christian
Morf, Thomas
Toifl, Thomas
description The implementation of a 25.6-Gb/s four-level pulse-amplitude-modulation (4-PAM) reduced-state sliding-block Viterbi detector (VD) is presented. The power consumption of the VD is 105mW at a supply voltage of 0.7 V, corresponding to an energy efficiency of 4.1 pJ/b. A data rate of 30.4 Gb/s is achieved with an energy efficiency of 5.3 pJ/b at a supply voltage of 0.8 V. The VD, implemented in an experimental chip fabricated in 14-nm CMOS FINFET, exploits set-partitioning principles and embedded per-survivor decision feedback to reduce implementation complexity and power consumption. The active area of the VD with 12 slices, each operating at one-eighth of the modulation rate, is 0.507\times0.717 mm 2 . Experimental results showing system performance are obtained by using a (2 15 -1)-bit pseudo-random binary sequence. The impact of the synchronization length and survivor path memory length on the detector design and system performance are shown. A new pipelined reduced-state sequence detector algorithm is presented for high-speed implementations. A novel speculative symbol timing recovery scheme is proposed. New simulation results are obtained to compare the performance of the Reed-Solomon (RS)-encoded 4-PAM scheme with that of the concatenated RS 4-D 5-PAM trellis-coded-modulation (TCM) scheme over an ideal band-limited additive-white-Gaussian-noise channel. Drawing on the results achieved for the VD, novel design techniques for a high-speed low-complexity eight-state 4-D 5-PAM TCM decoder is proposed.
doi_str_mv 10.1109/TCSI.2018.2803735
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2018_2803735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8319905</ieee_id><sourcerecordid>2117159877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1ad7494314084c73941a3d2e8003e4bed428b54c55b31065057f5553315e17803</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4soOKcfQHwJ-JyZa5I1eZRO3WDDh1VfQ9tct4zazqQV_Pa2bPh0x_G7O_6_KLoHNgNg-ilLt6tZzEDNYsV4wuVFNAEpFWWKzS_HXmiqeKyuo5sQDozFmnGYRHaBwe0akmG5b9x3j4FUrSdLt9vT7RHRkk1fd46u8Qdr8uk69IUjC-yw7FofSN5Yknmsaxdo2lq0dNPavs471zYDVg4jH26jqyqvA96d6zT6eH3J0iVdv7-t0uc1LWPNOwq5TYQWHARToky4FpBzG6NijKMo0IpYFVKUUhYc2FwymVRSSs5BIiRD7Gn0eLp79O0YpTOHtvfN8NLEAAlIrZJkoOBElb4NwWNljt595f7XADOjTDPKNKNMc5Y57Dycdhwi_vOKg9ZM8j-0WW6y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117159877</pqid></control><display><type>article</type><title>Design Techniques for High-Speed Multi-Level Viterbi Detectors and Trellis-Coded-Modulation Decoders</title><source>IEEE Electronic Library (IEL)</source><creator>Yueksel, Hazar ; Braendli, Matthias ; Burg, Andreas ; Cherubini, Giovanni ; Cideciyan, Roy D. ; Francese, Pier Andrea ; Furrer, Simeon ; Kossel, Marcel ; Kull, Lukas ; Luu, Danny ; Menolfi, Christian ; Morf, Thomas ; Toifl, Thomas</creator><creatorcontrib>Yueksel, Hazar ; Braendli, Matthias ; Burg, Andreas ; Cherubini, Giovanni ; Cideciyan, Roy D. ; Francese, Pier Andrea ; Furrer, Simeon ; Kossel, Marcel ; Kull, Lukas ; Luu, Danny ; Menolfi, Christian ; Morf, Thomas ; Toifl, Thomas</creatorcontrib><description>The implementation of a 25.6-Gb/s four-level pulse-amplitude-modulation (4-PAM) reduced-state sliding-block Viterbi detector (VD) is presented. The power consumption of the VD is 105mW at a supply voltage of 0.7 V, corresponding to an energy efficiency of 4.1 pJ/b. A data rate of 30.4 Gb/s is achieved with an energy efficiency of 5.3 pJ/b at a supply voltage of 0.8 V. The VD, implemented in an experimental chip fabricated in 14-nm CMOS FINFET, exploits set-partitioning principles and embedded per-survivor decision feedback to reduce implementation complexity and power consumption. The active area of the VD with 12 slices, each operating at one-eighth of the modulation rate, is &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;0.507\times0.717 &lt;/tex-math&gt;&lt;/inline-formula&gt; mm 2 . Experimental results showing system performance are obtained by using a (2 15 -1)-bit pseudo-random binary sequence. The impact of the synchronization length and survivor path memory length on the detector design and system performance are shown. A new pipelined reduced-state sequence detector algorithm is presented for high-speed implementations. A novel speculative symbol timing recovery scheme is proposed. New simulation results are obtained to compare the performance of the Reed-Solomon (RS)-encoded 4-PAM scheme with that of the concatenated RS 4-D 5-PAM trellis-coded-modulation (TCM) scheme over an ideal band-limited additive-white-Gaussian-noise channel. Drawing on the results achieved for the VD, novel design techniques for a high-speed low-complexity eight-state 4-D 5-PAM TCM decoder is proposed.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2018.2803735</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4-PAM ; 5-PAM ; CMOS ; Coding ; Complexity ; Computer simulation ; Decoders ; Decoding ; Detectors ; Electric potential ; Energy efficiency ; EPON ; four-dimensional ; High speed ; IEEE 802.3 Standard ; IEEE 802.3bj ; IEEE 802.3bs ; Modulation ; per-survivor decision feedback ; Power consumption ; Power demand ; Power efficiency ; Sensors ; set partitioning ; Synchronism ; TCM decoder ; Viterbi algorithm ; Viterbi detector</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3529-3542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1ad7494314084c73941a3d2e8003e4bed428b54c55b31065057f5553315e17803</citedby><cites>FETCH-LOGICAL-c293t-1ad7494314084c73941a3d2e8003e4bed428b54c55b31065057f5553315e17803</cites><orcidid>0000-0001-5251-9822 ; 0000-0003-2817-0354 ; 0000-0002-7270-5558 ; 0000-0002-0573-2919 ; 0000-0002-2712-6653 ; 0000-0003-0345-676X ; 0000-0002-6448-1961 ; 0000-0003-1782-3727</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8319905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8319905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yueksel, Hazar</creatorcontrib><creatorcontrib>Braendli, Matthias</creatorcontrib><creatorcontrib>Burg, Andreas</creatorcontrib><creatorcontrib>Cherubini, Giovanni</creatorcontrib><creatorcontrib>Cideciyan, Roy D.</creatorcontrib><creatorcontrib>Francese, Pier Andrea</creatorcontrib><creatorcontrib>Furrer, Simeon</creatorcontrib><creatorcontrib>Kossel, Marcel</creatorcontrib><creatorcontrib>Kull, Lukas</creatorcontrib><creatorcontrib>Luu, Danny</creatorcontrib><creatorcontrib>Menolfi, Christian</creatorcontrib><creatorcontrib>Morf, Thomas</creatorcontrib><creatorcontrib>Toifl, Thomas</creatorcontrib><title>Design Techniques for High-Speed Multi-Level Viterbi Detectors and Trellis-Coded-Modulation Decoders</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>The implementation of a 25.6-Gb/s four-level pulse-amplitude-modulation (4-PAM) reduced-state sliding-block Viterbi detector (VD) is presented. The power consumption of the VD is 105mW at a supply voltage of 0.7 V, corresponding to an energy efficiency of 4.1 pJ/b. A data rate of 30.4 Gb/s is achieved with an energy efficiency of 5.3 pJ/b at a supply voltage of 0.8 V. The VD, implemented in an experimental chip fabricated in 14-nm CMOS FINFET, exploits set-partitioning principles and embedded per-survivor decision feedback to reduce implementation complexity and power consumption. The active area of the VD with 12 slices, each operating at one-eighth of the modulation rate, is &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;0.507\times0.717 &lt;/tex-math&gt;&lt;/inline-formula&gt; mm 2 . Experimental results showing system performance are obtained by using a (2 15 -1)-bit pseudo-random binary sequence. The impact of the synchronization length and survivor path memory length on the detector design and system performance are shown. A new pipelined reduced-state sequence detector algorithm is presented for high-speed implementations. A novel speculative symbol timing recovery scheme is proposed. New simulation results are obtained to compare the performance of the Reed-Solomon (RS)-encoded 4-PAM scheme with that of the concatenated RS 4-D 5-PAM trellis-coded-modulation (TCM) scheme over an ideal band-limited additive-white-Gaussian-noise channel. Drawing on the results achieved for the VD, novel design techniques for a high-speed low-complexity eight-state 4-D 5-PAM TCM decoder is proposed.</description><subject>4-PAM</subject><subject>5-PAM</subject><subject>CMOS</subject><subject>Coding</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Detectors</subject><subject>Electric potential</subject><subject>Energy efficiency</subject><subject>EPON</subject><subject>four-dimensional</subject><subject>High speed</subject><subject>IEEE 802.3 Standard</subject><subject>IEEE 802.3bj</subject><subject>IEEE 802.3bs</subject><subject>Modulation</subject><subject>per-survivor decision feedback</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power efficiency</subject><subject>Sensors</subject><subject>set partitioning</subject><subject>Synchronism</subject><subject>TCM decoder</subject><subject>Viterbi algorithm</subject><subject>Viterbi detector</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4soOKcfQHwJ-JyZa5I1eZRO3WDDh1VfQ9tct4zazqQV_Pa2bPh0x_G7O_6_KLoHNgNg-ilLt6tZzEDNYsV4wuVFNAEpFWWKzS_HXmiqeKyuo5sQDozFmnGYRHaBwe0akmG5b9x3j4FUrSdLt9vT7RHRkk1fd46u8Qdr8uk69IUjC-yw7FofSN5Yknmsaxdo2lq0dNPavs471zYDVg4jH26jqyqvA96d6zT6eH3J0iVdv7-t0uc1LWPNOwq5TYQWHARToky4FpBzG6NijKMo0IpYFVKUUhYc2FwymVRSSs5BIiRD7Gn0eLp79O0YpTOHtvfN8NLEAAlIrZJkoOBElb4NwWNljt595f7XADOjTDPKNKNMc5Y57Dycdhwi_vOKg9ZM8j-0WW6y</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Yueksel, Hazar</creator><creator>Braendli, Matthias</creator><creator>Burg, Andreas</creator><creator>Cherubini, Giovanni</creator><creator>Cideciyan, Roy D.</creator><creator>Francese, Pier Andrea</creator><creator>Furrer, Simeon</creator><creator>Kossel, Marcel</creator><creator>Kull, Lukas</creator><creator>Luu, Danny</creator><creator>Menolfi, Christian</creator><creator>Morf, Thomas</creator><creator>Toifl, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5251-9822</orcidid><orcidid>https://orcid.org/0000-0003-2817-0354</orcidid><orcidid>https://orcid.org/0000-0002-7270-5558</orcidid><orcidid>https://orcid.org/0000-0002-0573-2919</orcidid><orcidid>https://orcid.org/0000-0002-2712-6653</orcidid><orcidid>https://orcid.org/0000-0003-0345-676X</orcidid><orcidid>https://orcid.org/0000-0002-6448-1961</orcidid><orcidid>https://orcid.org/0000-0003-1782-3727</orcidid></search><sort><creationdate>20181001</creationdate><title>Design Techniques for High-Speed Multi-Level Viterbi Detectors and Trellis-Coded-Modulation Decoders</title><author>Yueksel, Hazar ; Braendli, Matthias ; Burg, Andreas ; Cherubini, Giovanni ; Cideciyan, Roy D. ; Francese, Pier Andrea ; Furrer, Simeon ; Kossel, Marcel ; Kull, Lukas ; Luu, Danny ; Menolfi, Christian ; Morf, Thomas ; Toifl, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1ad7494314084c73941a3d2e8003e4bed428b54c55b31065057f5553315e17803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>4-PAM</topic><topic>5-PAM</topic><topic>CMOS</topic><topic>Coding</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Detectors</topic><topic>Electric potential</topic><topic>Energy efficiency</topic><topic>EPON</topic><topic>four-dimensional</topic><topic>High speed</topic><topic>IEEE 802.3 Standard</topic><topic>IEEE 802.3bj</topic><topic>IEEE 802.3bs</topic><topic>Modulation</topic><topic>per-survivor decision feedback</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power efficiency</topic><topic>Sensors</topic><topic>set partitioning</topic><topic>Synchronism</topic><topic>TCM decoder</topic><topic>Viterbi algorithm</topic><topic>Viterbi detector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yueksel, Hazar</creatorcontrib><creatorcontrib>Braendli, Matthias</creatorcontrib><creatorcontrib>Burg, Andreas</creatorcontrib><creatorcontrib>Cherubini, Giovanni</creatorcontrib><creatorcontrib>Cideciyan, Roy D.</creatorcontrib><creatorcontrib>Francese, Pier Andrea</creatorcontrib><creatorcontrib>Furrer, Simeon</creatorcontrib><creatorcontrib>Kossel, Marcel</creatorcontrib><creatorcontrib>Kull, Lukas</creatorcontrib><creatorcontrib>Luu, Danny</creatorcontrib><creatorcontrib>Menolfi, Christian</creatorcontrib><creatorcontrib>Morf, Thomas</creatorcontrib><creatorcontrib>Toifl, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yueksel, Hazar</au><au>Braendli, Matthias</au><au>Burg, Andreas</au><au>Cherubini, Giovanni</au><au>Cideciyan, Roy D.</au><au>Francese, Pier Andrea</au><au>Furrer, Simeon</au><au>Kossel, Marcel</au><au>Kull, Lukas</au><au>Luu, Danny</au><au>Menolfi, Christian</au><au>Morf, Thomas</au><au>Toifl, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Techniques for High-Speed Multi-Level Viterbi Detectors and Trellis-Coded-Modulation Decoders</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>65</volume><issue>10</issue><spage>3529</spage><epage>3542</epage><pages>3529-3542</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The implementation of a 25.6-Gb/s four-level pulse-amplitude-modulation (4-PAM) reduced-state sliding-block Viterbi detector (VD) is presented. The power consumption of the VD is 105mW at a supply voltage of 0.7 V, corresponding to an energy efficiency of 4.1 pJ/b. A data rate of 30.4 Gb/s is achieved with an energy efficiency of 5.3 pJ/b at a supply voltage of 0.8 V. The VD, implemented in an experimental chip fabricated in 14-nm CMOS FINFET, exploits set-partitioning principles and embedded per-survivor decision feedback to reduce implementation complexity and power consumption. The active area of the VD with 12 slices, each operating at one-eighth of the modulation rate, is &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;0.507\times0.717 &lt;/tex-math&gt;&lt;/inline-formula&gt; mm 2 . Experimental results showing system performance are obtained by using a (2 15 -1)-bit pseudo-random binary sequence. The impact of the synchronization length and survivor path memory length on the detector design and system performance are shown. A new pipelined reduced-state sequence detector algorithm is presented for high-speed implementations. A novel speculative symbol timing recovery scheme is proposed. New simulation results are obtained to compare the performance of the Reed-Solomon (RS)-encoded 4-PAM scheme with that of the concatenated RS 4-D 5-PAM trellis-coded-modulation (TCM) scheme over an ideal band-limited additive-white-Gaussian-noise channel. Drawing on the results achieved for the VD, novel design techniques for a high-speed low-complexity eight-state 4-D 5-PAM TCM decoder is proposed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2018.2803735</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5251-9822</orcidid><orcidid>https://orcid.org/0000-0003-2817-0354</orcidid><orcidid>https://orcid.org/0000-0002-7270-5558</orcidid><orcidid>https://orcid.org/0000-0002-0573-2919</orcidid><orcidid>https://orcid.org/0000-0002-2712-6653</orcidid><orcidid>https://orcid.org/0000-0003-0345-676X</orcidid><orcidid>https://orcid.org/0000-0002-6448-1961</orcidid><orcidid>https://orcid.org/0000-0003-1782-3727</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2018-10, Vol.65 (10), p.3529-3542
issn 1549-8328
1558-0806
language eng
recordid cdi_crossref_primary_10_1109_TCSI_2018_2803735
source IEEE Electronic Library (IEL)
subjects 4-PAM
5-PAM
CMOS
Coding
Complexity
Computer simulation
Decoders
Decoding
Detectors
Electric potential
Energy efficiency
EPON
four-dimensional
High speed
IEEE 802.3 Standard
IEEE 802.3bj
IEEE 802.3bs
Modulation
per-survivor decision feedback
Power consumption
Power demand
Power efficiency
Sensors
set partitioning
Synchronism
TCM decoder
Viterbi algorithm
Viterbi detector
title Design Techniques for High-Speed Multi-Level Viterbi Detectors and Trellis-Coded-Modulation Decoders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A36%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Techniques%20for%20High-Speed%20Multi-Level%20Viterbi%20Detectors%20and%20Trellis-Coded-Modulation%20Decoders&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Yueksel,%20Hazar&rft.date=2018-10-01&rft.volume=65&rft.issue=10&rft.spage=3529&rft.epage=3542&rft.pages=3529-3542&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2018.2803735&rft_dat=%3Cproquest_RIE%3E2117159877%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117159877&rft_id=info:pmid/&rft_ieee_id=8319905&rfr_iscdi=true