A 0.016 mm2 12 b \Delta \Sigma SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays

The instrumentation systems for implantable brain- machine interfaces represent one of the most demanding applications for ultra low-power analogue-to-digital-converters (ADC) to date. To address this challenge, this paper proposes a ΔΣSAR topology for very large sensor arrays that allows an excepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2017-10, Vol.64 (10), p.2655-2665
Hauptverfasser: Leene, Lieuwe B., Constandinou, Timothy G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2665
container_issue 10
container_start_page 2655
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 64
creator Leene, Lieuwe B.
Constandinou, Timothy G.
description The instrumentation systems for implantable brain- machine interfaces represent one of the most demanding applications for ultra low-power analogue-to-digital-converters (ADC) to date. To address this challenge, this paper proposes a ΔΣSAR topology for very large sensor arrays that allows an exceptional reduction in silicon footprint by using a continuous time 0-2MASH topology. This configuration uses a specialized FIR window to decimate the ΔΣ modulator output and reject mismatch errors from the SAR quantizer, which mitigates the overhead from dynamic element matching techniques commonly used to achieve high precision. A fully differential prototype was fabricated using 0.18 μm CMOS to demonstrate 10.8 ENOB precision with a 0.016 mm 2 silicon footprint. Moreover, a 14 fJ/conv figure-of-merit can be achieved, while resolving signals with the maximum input amplitude of ±1.2 Vpp sampled at 200 kS/s. The ADC topology exhibits a number of promising characteristics for both high speed and ultra low-power systems due to the reduced complexity, switching noise, sampling load, and oversampling ratio, which are critical parameters for many sensor applications.
doi_str_mv 10.1109/TCSI.2017.2703580
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2017_2703580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7949142</ieee_id><sourcerecordid>2174474198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1810-feae2cd69c08445522f0293c7d020bfd6633bec44a7c2702b6f5df84ca479ec43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKs_QLwseE46s9kku8davyoFxbbooRA2m11Nabp1N7X035vQ4mmGmfedjycIrhEiRBCD2Wg6jihgFtEM4oTDSdDDJOEhcEhPu5yJkMeUnwcX3i8BqIAYe8HnkEAEmJK6pgQpKcjiXq8aSRbT6quWZDp8Jx9V802QEfMyUHb9GxFjHZmvGifJxO7Im91pR-4q6_Xat52hc3LvL4MzI1deXx1jP5g_PsxGz-Hk9Wk8Gk5ChRwhNFpqqspUKOCMJQmlpj0tVlkJFApTpmkcF1oxJjPVfkaL1CSl4UxJlom2HveD28PcjbM_W-2bfGm3bt2uzClmjGUMBW9VeFApZ7132uQbV9XS7XOEvAOYdwDzDmB-BNh6bg6eSmv9r88EE8ho_Aen0Gex</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174474198</pqid></control><display><type>article</type><title>A 0.016 mm2 12 b \Delta \Sigma SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays</title><source>IEEE Electronic Library (IEL)</source><creator>Leene, Lieuwe B. ; Constandinou, Timothy G.</creator><creatorcontrib>Leene, Lieuwe B. ; Constandinou, Timothy G.</creatorcontrib><description>The instrumentation systems for implantable brain- machine interfaces represent one of the most demanding applications for ultra low-power analogue-to-digital-converters (ADC) to date. To address this challenge, this paper proposes a ΔΣSAR topology for very large sensor arrays that allows an exceptional reduction in silicon footprint by using a continuous time 0-2MASH topology. This configuration uses a specialized FIR window to decimate the ΔΣ modulator output and reject mismatch errors from the SAR quantizer, which mitigates the overhead from dynamic element matching techniques commonly used to achieve high precision. A fully differential prototype was fabricated using 0.18 μm CMOS to demonstrate 10.8 ENOB precision with a 0.016 mm 2 silicon footprint. Moreover, a 14 fJ/conv figure-of-merit can be achieved, while resolving signals with the maximum input amplitude of ±1.2 Vpp sampled at 200 kS/s. The ADC topology exhibits a number of promising characteristics for both high speed and ultra low-power systems due to the reduced complexity, switching noise, sampling load, and oversampling ratio, which are critical parameters for many sensor applications.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2017.2703580</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>A/D conversion ; ADC calibration ; Analog to digital conversion ; bio-sensors arrays ; Biosensors ; Brain ; CMOS ; Continuity (mathematics) ; Converters ; Finite impulse response filters ; FIR decimation ; Footprints ; incremental delta-sigma ; low power analogue ; Modulation ; Noise shaping ; Oversampling ; Quantization (signal) ; Sensor arrays ; Silicon ; Switches ; Topology ; Windows (intervals)</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2017-10, Vol.64 (10), p.2655-2665</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1810-feae2cd69c08445522f0293c7d020bfd6633bec44a7c2702b6f5df84ca479ec43</citedby><cites>FETCH-LOGICAL-c1810-feae2cd69c08445522f0293c7d020bfd6633bec44a7c2702b6f5df84ca479ec43</cites><orcidid>0000-0002-6899-2662 ; 0000-0001-9778-1162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7949142$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Leene, Lieuwe B.</creatorcontrib><creatorcontrib>Constandinou, Timothy G.</creatorcontrib><title>A 0.016 mm2 12 b \Delta \Sigma SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>The instrumentation systems for implantable brain- machine interfaces represent one of the most demanding applications for ultra low-power analogue-to-digital-converters (ADC) to date. To address this challenge, this paper proposes a ΔΣSAR topology for very large sensor arrays that allows an exceptional reduction in silicon footprint by using a continuous time 0-2MASH topology. This configuration uses a specialized FIR window to decimate the ΔΣ modulator output and reject mismatch errors from the SAR quantizer, which mitigates the overhead from dynamic element matching techniques commonly used to achieve high precision. A fully differential prototype was fabricated using 0.18 μm CMOS to demonstrate 10.8 ENOB precision with a 0.016 mm 2 silicon footprint. Moreover, a 14 fJ/conv figure-of-merit can be achieved, while resolving signals with the maximum input amplitude of ±1.2 Vpp sampled at 200 kS/s. The ADC topology exhibits a number of promising characteristics for both high speed and ultra low-power systems due to the reduced complexity, switching noise, sampling load, and oversampling ratio, which are critical parameters for many sensor applications.</description><subject>A/D conversion</subject><subject>ADC calibration</subject><subject>Analog to digital conversion</subject><subject>bio-sensors arrays</subject><subject>Biosensors</subject><subject>Brain</subject><subject>CMOS</subject><subject>Continuity (mathematics)</subject><subject>Converters</subject><subject>Finite impulse response filters</subject><subject>FIR decimation</subject><subject>Footprints</subject><subject>incremental delta-sigma</subject><subject>low power analogue</subject><subject>Modulation</subject><subject>Noise shaping</subject><subject>Oversampling</subject><subject>Quantization (signal)</subject><subject>Sensor arrays</subject><subject>Silicon</subject><subject>Switches</subject><subject>Topology</subject><subject>Windows (intervals)</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhoMoWKs_QLwseE46s9kku8davyoFxbbooRA2m11Nabp1N7X035vQ4mmGmfedjycIrhEiRBCD2Wg6jihgFtEM4oTDSdDDJOEhcEhPu5yJkMeUnwcX3i8BqIAYe8HnkEAEmJK6pgQpKcjiXq8aSRbT6quWZDp8Jx9V802QEfMyUHb9GxFjHZmvGifJxO7Im91pR-4q6_Xat52hc3LvL4MzI1deXx1jP5g_PsxGz-Hk9Wk8Gk5ChRwhNFpqqspUKOCMJQmlpj0tVlkJFApTpmkcF1oxJjPVfkaL1CSl4UxJlom2HveD28PcjbM_W-2bfGm3bt2uzClmjGUMBW9VeFApZ7132uQbV9XS7XOEvAOYdwDzDmB-BNh6bg6eSmv9r88EE8ho_Aen0Gex</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Leene, Lieuwe B.</creator><creator>Constandinou, Timothy G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6899-2662</orcidid><orcidid>https://orcid.org/0000-0001-9778-1162</orcidid></search><sort><creationdate>201710</creationdate><title>A 0.016 mm2 12 b \Delta \Sigma SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays</title><author>Leene, Lieuwe B. ; Constandinou, Timothy G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1810-feae2cd69c08445522f0293c7d020bfd6633bec44a7c2702b6f5df84ca479ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A/D conversion</topic><topic>ADC calibration</topic><topic>Analog to digital conversion</topic><topic>bio-sensors arrays</topic><topic>Biosensors</topic><topic>Brain</topic><topic>CMOS</topic><topic>Continuity (mathematics)</topic><topic>Converters</topic><topic>Finite impulse response filters</topic><topic>FIR decimation</topic><topic>Footprints</topic><topic>incremental delta-sigma</topic><topic>low power analogue</topic><topic>Modulation</topic><topic>Noise shaping</topic><topic>Oversampling</topic><topic>Quantization (signal)</topic><topic>Sensor arrays</topic><topic>Silicon</topic><topic>Switches</topic><topic>Topology</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leene, Lieuwe B.</creatorcontrib><creatorcontrib>Constandinou, Timothy G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leene, Lieuwe B.</au><au>Constandinou, Timothy G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0.016 mm2 12 b \Delta \Sigma SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2017-10</date><risdate>2017</risdate><volume>64</volume><issue>10</issue><spage>2655</spage><epage>2665</epage><pages>2655-2665</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>The instrumentation systems for implantable brain- machine interfaces represent one of the most demanding applications for ultra low-power analogue-to-digital-converters (ADC) to date. To address this challenge, this paper proposes a ΔΣSAR topology for very large sensor arrays that allows an exceptional reduction in silicon footprint by using a continuous time 0-2MASH topology. This configuration uses a specialized FIR window to decimate the ΔΣ modulator output and reject mismatch errors from the SAR quantizer, which mitigates the overhead from dynamic element matching techniques commonly used to achieve high precision. A fully differential prototype was fabricated using 0.18 μm CMOS to demonstrate 10.8 ENOB precision with a 0.016 mm 2 silicon footprint. Moreover, a 14 fJ/conv figure-of-merit can be achieved, while resolving signals with the maximum input amplitude of ±1.2 Vpp sampled at 200 kS/s. The ADC topology exhibits a number of promising characteristics for both high speed and ultra low-power systems due to the reduced complexity, switching noise, sampling load, and oversampling ratio, which are critical parameters for many sensor applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2017.2703580</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6899-2662</orcidid><orcidid>https://orcid.org/0000-0001-9778-1162</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2017-10, Vol.64 (10), p.2655-2665
issn 1549-8328
1558-0806
language eng
recordid cdi_crossref_primary_10_1109_TCSI_2017_2703580
source IEEE Electronic Library (IEL)
subjects A/D conversion
ADC calibration
Analog to digital conversion
bio-sensors arrays
Biosensors
Brain
CMOS
Continuity (mathematics)
Converters
Finite impulse response filters
FIR decimation
Footprints
incremental delta-sigma
low power analogue
Modulation
Noise shaping
Oversampling
Quantization (signal)
Sensor arrays
Silicon
Switches
Topology
Windows (intervals)
title A 0.016 mm2 12 b \Delta \Sigma SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200.016%20mm2%2012%20b%20%5CDelta%20%5CSigma%20SAR%20With%2014%20fJ/conv.%20for%20Ultra%20Low%20Power%20Biosensor%20Arrays&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Leene,%20Lieuwe%20B.&rft.date=2017-10&rft.volume=64&rft.issue=10&rft.spage=2655&rft.epage=2665&rft.pages=2655-2665&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2017.2703580&rft_dat=%3Cproquest_cross%3E2174474198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174474198&rft_id=info:pmid/&rft_ieee_id=7949142&rfr_iscdi=true