A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus

Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-12, Vol.61 (12), p.3496-3505
Hauptverfasser: Lashkarian, Navid, Jun Shi, Forbes, Marcellus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3505
container_issue 12
container_start_page 3496
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 61
creator Lashkarian, Navid
Jun Shi
Forbes, Marcellus
description Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.
doi_str_mv 10.1109/TCSI.2014.2337252
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2014_2337252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6928509</ieee_id><sourcerecordid>1651403250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhosoOKd_gHgJePHSmS9p0vQ4569BQWEDjyFLv2pG186kVfSvN2PiwdP3Hp735eNJknOgEwBaXC9ni_mEUcgmjPOcCXaQjEAIlVJF5eEuZ0WqOFPHyUkIa0pZQTmMEj0lt86j7UmJxreufSXTymx794FkYd9wg6TuPHnuPtGn0822cbVDT0rXRtx9m951LbkxASsSw4vzfZyIwMw0dmiGcJoc1aYJePZ7x8ny_m45e0zLp4f5bFqmlheyT0HlNRc1FWZVAeaG1aqQklWSKQZM5BKpygCrCiS1UlrIqzyvjEXLbUFXfJxc7We3vnsfMPR644LFpjEtdkPQIAVklDNBI3r5D113g2_jc5FiuZIZFxAp2FPWdyF4rPXWu43xXxqo3hnXO-N6Z1z_Go-di33HIeIfLwumBC34D4pAe8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627864351</pqid></control><display><type>article</type><title>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</title><source>IEEE Electronic Library (IEL)</source><creator>Lashkarian, Navid ; Jun Shi ; Forbes, Marcellus</creator><creatorcontrib>Lashkarian, Navid ; Jun Shi ; Forbes, Marcellus</creatorcontrib><description>Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2014.2337252</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Baseband ; Calculus ; Direct learning ; Kernel ; Learning ; Linearization ; Mathematical analysis ; Mathematical models ; Nonlinear distortion ; Operators ; Optimization ; power amplifier ; Predistortion ; Vectors ; Wirtinger calculus</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2014-12, Vol.61 (12), p.3496-3505</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</citedby><cites>FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6928509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6928509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lashkarian, Navid</creatorcontrib><creatorcontrib>Jun Shi</creatorcontrib><creatorcontrib>Forbes, Marcellus</creatorcontrib><title>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.</description><subject>Adaptive filters</subject><subject>Baseband</subject><subject>Calculus</subject><subject>Direct learning</subject><subject>Kernel</subject><subject>Learning</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear distortion</subject><subject>Operators</subject><subject>Optimization</subject><subject>power amplifier</subject><subject>Predistortion</subject><subject>Vectors</subject><subject>Wirtinger calculus</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAYhosoOKd_gHgJePHSmS9p0vQ4569BQWEDjyFLv2pG186kVfSvN2PiwdP3Hp735eNJknOgEwBaXC9ni_mEUcgmjPOcCXaQjEAIlVJF5eEuZ0WqOFPHyUkIa0pZQTmMEj0lt86j7UmJxreufSXTymx794FkYd9wg6TuPHnuPtGn0822cbVDT0rXRtx9m951LbkxASsSw4vzfZyIwMw0dmiGcJoc1aYJePZ7x8ny_m45e0zLp4f5bFqmlheyT0HlNRc1FWZVAeaG1aqQklWSKQZM5BKpygCrCiS1UlrIqzyvjEXLbUFXfJxc7We3vnsfMPR644LFpjEtdkPQIAVklDNBI3r5D113g2_jc5FiuZIZFxAp2FPWdyF4rPXWu43xXxqo3hnXO-N6Z1z_Go-di33HIeIfLwumBC34D4pAe8Y</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lashkarian, Navid</creator><creator>Jun Shi</creator><creator>Forbes, Marcellus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</title><author>Lashkarian, Navid ; Jun Shi ; Forbes, Marcellus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive filters</topic><topic>Baseband</topic><topic>Calculus</topic><topic>Direct learning</topic><topic>Kernel</topic><topic>Learning</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear distortion</topic><topic>Operators</topic><topic>Optimization</topic><topic>power amplifier</topic><topic>Predistortion</topic><topic>Vectors</topic><topic>Wirtinger calculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lashkarian, Navid</creatorcontrib><creatorcontrib>Jun Shi</creatorcontrib><creatorcontrib>Forbes, Marcellus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lashkarian, Navid</au><au>Jun Shi</au><au>Forbes, Marcellus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>61</volume><issue>12</issue><spage>3496</spage><epage>3505</epage><pages>3496-3505</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2014.2337252</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2014-12, Vol.61 (12), p.3496-3505
issn 1549-8328
1558-0806
language eng
recordid cdi_crossref_primary_10_1109_TCSI_2014_2337252
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Baseband
Calculus
Direct learning
Kernel
Learning
Linearization
Mathematical analysis
Mathematical models
Nonlinear distortion
Operators
Optimization
power amplifier
Predistortion
Vectors
Wirtinger calculus
title A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Direct%20Learning%20Adaptive%20Scheme%20for%20Power-Amplifier%20Linearization%20Based%20on%20Wirtinger%20Calculus&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Lashkarian,%20Navid&rft.date=2014-12-01&rft.volume=61&rft.issue=12&rft.spage=3496&rft.epage=3505&rft.pages=3496-3505&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2014.2337252&rft_dat=%3Cproquest_RIE%3E1651403250%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627864351&rft_id=info:pmid/&rft_ieee_id=6928509&rfr_iscdi=true