A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus
Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-12, Vol.61 (12), p.3496-3505 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3505 |
---|---|
container_issue | 12 |
container_start_page | 3496 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 61 |
creator | Lashkarian, Navid Jun Shi Forbes, Marcellus |
description | Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed. |
doi_str_mv | 10.1109/TCSI.2014.2337252 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSI_2014_2337252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6928509</ieee_id><sourcerecordid>1651403250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhosoOKd_gHgJePHSmS9p0vQ4569BQWEDjyFLv2pG186kVfSvN2PiwdP3Hp735eNJknOgEwBaXC9ni_mEUcgmjPOcCXaQjEAIlVJF5eEuZ0WqOFPHyUkIa0pZQTmMEj0lt86j7UmJxreufSXTymx794FkYd9wg6TuPHnuPtGn0822cbVDT0rXRtx9m951LbkxASsSw4vzfZyIwMw0dmiGcJoc1aYJePZ7x8ny_m45e0zLp4f5bFqmlheyT0HlNRc1FWZVAeaG1aqQklWSKQZM5BKpygCrCiS1UlrIqzyvjEXLbUFXfJxc7We3vnsfMPR644LFpjEtdkPQIAVklDNBI3r5D113g2_jc5FiuZIZFxAp2FPWdyF4rPXWu43xXxqo3hnXO-N6Z1z_Go-di33HIeIfLwumBC34D4pAe8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627864351</pqid></control><display><type>article</type><title>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</title><source>IEEE Electronic Library (IEL)</source><creator>Lashkarian, Navid ; Jun Shi ; Forbes, Marcellus</creator><creatorcontrib>Lashkarian, Navid ; Jun Shi ; Forbes, Marcellus</creatorcontrib><description>Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2014.2337252</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Baseband ; Calculus ; Direct learning ; Kernel ; Learning ; Linearization ; Mathematical analysis ; Mathematical models ; Nonlinear distortion ; Operators ; Optimization ; power amplifier ; Predistortion ; Vectors ; Wirtinger calculus</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2014-12, Vol.61 (12), p.3496-3505</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</citedby><cites>FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6928509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6928509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lashkarian, Navid</creatorcontrib><creatorcontrib>Jun Shi</creatorcontrib><creatorcontrib>Forbes, Marcellus</creatorcontrib><title>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.</description><subject>Adaptive filters</subject><subject>Baseband</subject><subject>Calculus</subject><subject>Direct learning</subject><subject>Kernel</subject><subject>Learning</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear distortion</subject><subject>Operators</subject><subject>Optimization</subject><subject>power amplifier</subject><subject>Predistortion</subject><subject>Vectors</subject><subject>Wirtinger calculus</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAYhosoOKd_gHgJePHSmS9p0vQ4569BQWEDjyFLv2pG186kVfSvN2PiwdP3Hp735eNJknOgEwBaXC9ni_mEUcgmjPOcCXaQjEAIlVJF5eEuZ0WqOFPHyUkIa0pZQTmMEj0lt86j7UmJxreufSXTymx794FkYd9wg6TuPHnuPtGn0822cbVDT0rXRtx9m951LbkxASsSw4vzfZyIwMw0dmiGcJoc1aYJePZ7x8ny_m45e0zLp4f5bFqmlheyT0HlNRc1FWZVAeaG1aqQklWSKQZM5BKpygCrCiS1UlrIqzyvjEXLbUFXfJxc7We3vnsfMPR644LFpjEtdkPQIAVklDNBI3r5D113g2_jc5FiuZIZFxAp2FPWdyF4rPXWu43xXxqo3hnXO-N6Z1z_Go-di33HIeIfLwumBC34D4pAe8Y</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Lashkarian, Navid</creator><creator>Jun Shi</creator><creator>Forbes, Marcellus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</title><author>Lashkarian, Navid ; Jun Shi ; Forbes, Marcellus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-187f35f05abd1e7a2f89662d628212576e0841edd160c66c17d77dacec3c90b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptive filters</topic><topic>Baseband</topic><topic>Calculus</topic><topic>Direct learning</topic><topic>Kernel</topic><topic>Learning</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear distortion</topic><topic>Operators</topic><topic>Optimization</topic><topic>power amplifier</topic><topic>Predistortion</topic><topic>Vectors</topic><topic>Wirtinger calculus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lashkarian, Navid</creatorcontrib><creatorcontrib>Jun Shi</creatorcontrib><creatorcontrib>Forbes, Marcellus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lashkarian, Navid</au><au>Jun Shi</au><au>Forbes, Marcellus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>61</volume><issue>12</issue><spage>3496</spage><epage>3505</epage><pages>3496-3505</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Performance of radio frequency power amplifiers is often significantly degraded by nonlinearity and memory effects. We study the applicability of complex-domain adaptive filtering to the problem of predistortion kernel learning for power-amplifier linearization. The least-squares error function that arises while deriving the optimal predistortion function is often real with complex-valued arguments, therefore, nonanalytic in the Cauchy-Riemann sense. To avoid the strict Cauchy-Riemann differentiability condition for non-holomorphic functions (e.g. mean-square error), we resort to the theory of Wirtinger calculus, which allows construction of differential operators in a way that is analogous to functions of real variables. By deploying the new differential operators, digital pre-distortion coefficient optimization is carried out in a space isomorphic to the real vector space, at a computational complexity that is significantly lower than that of the real space. We also derive proper Hessian forms for minimization of the objective function and propose a variety of descent-update algorithms, namely Newton, Gauss-Newton, and their quasi-equivalent variants for this problem. Performance assessments and experimental validation of the proposed methodologies are also addressed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2014.2337252</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2014-12, Vol.61 (12), p.3496-3505 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSI_2014_2337252 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Baseband Calculus Direct learning Kernel Learning Linearization Mathematical analysis Mathematical models Nonlinear distortion Operators Optimization power amplifier Predistortion Vectors Wirtinger calculus |
title | A Direct Learning Adaptive Scheme for Power-Amplifier Linearization Based on Wirtinger Calculus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Direct%20Learning%20Adaptive%20Scheme%20for%20Power-Amplifier%20Linearization%20Based%20on%20Wirtinger%20Calculus&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Lashkarian,%20Navid&rft.date=2014-12-01&rft.volume=61&rft.issue=12&rft.spage=3496&rft.epage=3505&rft.pages=3496-3505&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2014.2337252&rft_dat=%3Cproquest_RIE%3E1651403250%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627864351&rft_id=info:pmid/&rft_ieee_id=6928509&rfr_iscdi=true |