Intelligent Network-on-Chip With Online Reinforcement Learning for Portable HD Object Recognition Processor
An intelligent Reinforcement Learning (RL) Network-on-Chip (NoC) is proposed as a communication architecture of a heterogeneous many-core processor for portable HD object recognition. The proposed RL NoC automatically learns bandwidth adjustment and resource allocation in the heterogeneous many-core...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-02, Vol.61 (2), p.476-484 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An intelligent Reinforcement Learning (RL) Network-on-Chip (NoC) is proposed as a communication architecture of a heterogeneous many-core processor for portable HD object recognition. The proposed RL NoC automatically learns bandwidth adjustment and resource allocation in the heterogeneous many-core processor without explicit modeling. By regulating the bandwidth and reallocating cores, the throughput performances of feature detection and description are increased by 20.4% and 11.5%, respectively. As a result, the overall execution time of the object recognition is reduced by 38%. The proposed processor with RL NoC is implemented in a 65 nm CMOS process, and it successfully demonstrates the real-time object recognition for a 720 p HD video stream while consuming 235 mW peak power at 200 MHz, 1.2 V. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2013.2284188 |