Intelligent Network-on-Chip With Online Reinforcement Learning for Portable HD Object Recognition Processor

An intelligent Reinforcement Learning (RL) Network-on-Chip (NoC) is proposed as a communication architecture of a heterogeneous many-core processor for portable HD object recognition. The proposed RL NoC automatically learns bandwidth adjustment and resource allocation in the heterogeneous many-core...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2014-02, Vol.61 (2), p.476-484
Hauptverfasser: Park, Junyoung, Hong, Injoon, Kim, Gyeonghoon, Nam, Byeong-Gyu, Yoo, Hoi-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An intelligent Reinforcement Learning (RL) Network-on-Chip (NoC) is proposed as a communication architecture of a heterogeneous many-core processor for portable HD object recognition. The proposed RL NoC automatically learns bandwidth adjustment and resource allocation in the heterogeneous many-core processor without explicit modeling. By regulating the bandwidth and reallocating cores, the throughput performances of feature detection and description are increased by 20.4% and 11.5%, respectively. As a result, the overall execution time of the object recognition is reduced by 38%. The proposed processor with RL NoC is implemented in a 65 nm CMOS process, and it successfully demonstrates the real-time object recognition for a 720 p HD video stream while consuming 235 mW peak power at 200 MHz, 1.2 V.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2013.2284188