Fault Diagnosis and Prognostics of Stochastic Distribution Systems
A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output incremen...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-07, Vol.71 (7), p.3378-3382 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3382 |
---|---|
container_issue | 7 |
container_start_page | 3378 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 71 |
creator | Gao, Youxuan Yao, Lina Sun, Yuan-Cheng |
description | A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine. |
doi_str_mv | 10.1109/TCSII.2024.3359308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2024_3359308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415868</ieee_id><sourcerecordid>3075426985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-c2bce3006a547d348e9d324cb57ca8558fc24eb3b58b795de68fe6fe4cb0add23</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQDwseN6av5vkqNXqQkGh9Ryy2aymtJuaZA_99mZtD15m5sHvzQwPgFsEZwhB-bCer-p6hiGmM0KYJFCcgQliTJSES3Q-zlSWnFN-Ca5i3ECIJSR4Ap4Wetim4tnpr95HFwvdt8VH8KNKzsTCd8UqefOtR5m5mIJrhuR8X6wOMdldvAYXnd5Ge3PqU_C5eFnP38rl-2s9f1yWBlOecm2MJRBWmlHeEiqsbAmmpmHcaJFf7TJnG9Iw0XDJWluJzladzQTUbYvJFNwf9-6D_xlsTGrjh9Dnk4pAziiupGCZwkfKBB9jsJ3aB7fT4aAQVGNW6i8rNWalTlll093R5Ky1_wwUMVEJ8gujbWaJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426985</pqid></control><display><type>article</type><title>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Youxuan ; Yao, Lina ; Sun, Yuan-Cheng</creator><creatorcontrib>Gao, Youxuan ; Yao, Lina ; Sun, Yuan-Cheng</creatorcontrib><description>A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2024.3359308</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuit faults ; Control systems ; Data models ; Degradation ; Effectiveness ; Fault diagnosis ; fault prognostics ; Mapping ; Nonlinear control ; Paper machines ; Prediction algorithms ; remaining useful life prediction ; Stochastic processes ; Wet ends</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-07, Vol.71 (7), p.3378-3382</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-c2bce3006a547d348e9d324cb57ca8558fc24eb3b58b795de68fe6fe4cb0add23</cites><orcidid>0009-0001-5978-0190 ; 0000-0002-3828-1018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415868$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10415868$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Youxuan</creatorcontrib><creatorcontrib>Yao, Lina</creatorcontrib><creatorcontrib>Sun, Yuan-Cheng</creatorcontrib><title>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine.</description><subject>Algorithms</subject><subject>Circuit faults</subject><subject>Control systems</subject><subject>Data models</subject><subject>Degradation</subject><subject>Effectiveness</subject><subject>Fault diagnosis</subject><subject>fault prognostics</subject><subject>Mapping</subject><subject>Nonlinear control</subject><subject>Paper machines</subject><subject>Prediction algorithms</subject><subject>remaining useful life prediction</subject><subject>Stochastic processes</subject><subject>Wet ends</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKtfQDwseN6av5vkqNXqQkGh9Ryy2aymtJuaZA_99mZtD15m5sHvzQwPgFsEZwhB-bCer-p6hiGmM0KYJFCcgQliTJSES3Q-zlSWnFN-Ca5i3ECIJSR4Ap4Wetim4tnpr95HFwvdt8VH8KNKzsTCd8UqefOtR5m5mIJrhuR8X6wOMdldvAYXnd5Ge3PqU_C5eFnP38rl-2s9f1yWBlOecm2MJRBWmlHeEiqsbAmmpmHcaJFf7TJnG9Iw0XDJWluJzladzQTUbYvJFNwf9-6D_xlsTGrjh9Dnk4pAziiupGCZwkfKBB9jsJ3aB7fT4aAQVGNW6i8rNWalTlll093R5Ky1_wwUMVEJ8gujbWaJ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Gao, Youxuan</creator><creator>Yao, Lina</creator><creator>Sun, Yuan-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-5978-0190</orcidid><orcidid>https://orcid.org/0000-0002-3828-1018</orcidid></search><sort><creationdate>20240701</creationdate><title>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</title><author>Gao, Youxuan ; Yao, Lina ; Sun, Yuan-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-c2bce3006a547d348e9d324cb57ca8558fc24eb3b58b795de68fe6fe4cb0add23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuit faults</topic><topic>Control systems</topic><topic>Data models</topic><topic>Degradation</topic><topic>Effectiveness</topic><topic>Fault diagnosis</topic><topic>fault prognostics</topic><topic>Mapping</topic><topic>Nonlinear control</topic><topic>Paper machines</topic><topic>Prediction algorithms</topic><topic>remaining useful life prediction</topic><topic>Stochastic processes</topic><topic>Wet ends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Youxuan</creatorcontrib><creatorcontrib>Yao, Lina</creatorcontrib><creatorcontrib>Sun, Yuan-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Youxuan</au><au>Yao, Lina</au><au>Sun, Yuan-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>71</volume><issue>7</issue><spage>3378</spage><epage>3382</epage><pages>3378-3382</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2024.3359308</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0001-5978-0190</orcidid><orcidid>https://orcid.org/0000-0002-3828-1018</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2024-07, Vol.71 (7), p.3378-3382 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSII_2024_3359308 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Circuit faults Control systems Data models Degradation Effectiveness Fault diagnosis fault prognostics Mapping Nonlinear control Paper machines Prediction algorithms remaining useful life prediction Stochastic processes Wet ends |
title | Fault Diagnosis and Prognostics of Stochastic Distribution Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20and%20Prognostics%20of%20Stochastic%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Gao,%20Youxuan&rft.date=2024-07-01&rft.volume=71&rft.issue=7&rft.spage=3378&rft.epage=3382&rft.pages=3378-3382&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2024.3359308&rft_dat=%3Cproquest_RIE%3E3075426985%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075426985&rft_id=info:pmid/&rft_ieee_id=10415868&rfr_iscdi=true |