Fault Diagnosis and Prognostics of Stochastic Distribution Systems

A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output incremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-07, Vol.71 (7), p.3378-3382
Hauptverfasser: Gao, Youxuan, Yao, Lina, Sun, Yuan-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3382
container_issue 7
container_start_page 3378
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 71
creator Gao, Youxuan
Yao, Lina
Sun, Yuan-Cheng
description A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine.
doi_str_mv 10.1109/TCSII.2024.3359308
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2024_3359308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415868</ieee_id><sourcerecordid>3075426985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-c2bce3006a547d348e9d324cb57ca8558fc24eb3b58b795de68fe6fe4cb0add23</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMoWKtfQDwseN6av5vkqNXqQkGh9Ryy2aymtJuaZA_99mZtD15m5sHvzQwPgFsEZwhB-bCer-p6hiGmM0KYJFCcgQliTJSES3Q-zlSWnFN-Ca5i3ECIJSR4Ap4Wetim4tnpr95HFwvdt8VH8KNKzsTCd8UqefOtR5m5mIJrhuR8X6wOMdldvAYXnd5Ge3PqU_C5eFnP38rl-2s9f1yWBlOecm2MJRBWmlHeEiqsbAmmpmHcaJFf7TJnG9Iw0XDJWluJzladzQTUbYvJFNwf9-6D_xlsTGrjh9Dnk4pAziiupGCZwkfKBB9jsJ3aB7fT4aAQVGNW6i8rNWalTlll093R5Ky1_wwUMVEJ8gujbWaJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075426985</pqid></control><display><type>article</type><title>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Youxuan ; Yao, Lina ; Sun, Yuan-Cheng</creator><creatorcontrib>Gao, Youxuan ; Yao, Lina ; Sun, Yuan-Cheng</creatorcontrib><description>A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2024.3359308</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuit faults ; Control systems ; Data models ; Degradation ; Effectiveness ; Fault diagnosis ; fault prognostics ; Mapping ; Nonlinear control ; Paper machines ; Prediction algorithms ; remaining useful life prediction ; Stochastic processes ; Wet ends</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-07, Vol.71 (7), p.3378-3382</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-c2bce3006a547d348e9d324cb57ca8558fc24eb3b58b795de68fe6fe4cb0add23</cites><orcidid>0009-0001-5978-0190 ; 0000-0002-3828-1018</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415868$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10415868$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Youxuan</creatorcontrib><creatorcontrib>Yao, Lina</creatorcontrib><creatorcontrib>Sun, Yuan-Cheng</creatorcontrib><title>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine.</description><subject>Algorithms</subject><subject>Circuit faults</subject><subject>Control systems</subject><subject>Data models</subject><subject>Degradation</subject><subject>Effectiveness</subject><subject>Fault diagnosis</subject><subject>fault prognostics</subject><subject>Mapping</subject><subject>Nonlinear control</subject><subject>Paper machines</subject><subject>Prediction algorithms</subject><subject>remaining useful life prediction</subject><subject>Stochastic processes</subject><subject>Wet ends</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMoWKtfQDwseN6av5vkqNXqQkGh9Ryy2aymtJuaZA_99mZtD15m5sHvzQwPgFsEZwhB-bCer-p6hiGmM0KYJFCcgQliTJSES3Q-zlSWnFN-Ca5i3ECIJSR4Ap4Wetim4tnpr95HFwvdt8VH8KNKzsTCd8UqefOtR5m5mIJrhuR8X6wOMdldvAYXnd5Ge3PqU_C5eFnP38rl-2s9f1yWBlOecm2MJRBWmlHeEiqsbAmmpmHcaJFf7TJnG9Iw0XDJWluJzladzQTUbYvJFNwf9-6D_xlsTGrjh9Dnk4pAziiupGCZwkfKBB9jsJ3aB7fT4aAQVGNW6i8rNWalTlll093R5Ky1_wwUMVEJ8gujbWaJ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Gao, Youxuan</creator><creator>Yao, Lina</creator><creator>Sun, Yuan-Cheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-5978-0190</orcidid><orcidid>https://orcid.org/0000-0002-3828-1018</orcidid></search><sort><creationdate>20240701</creationdate><title>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</title><author>Gao, Youxuan ; Yao, Lina ; Sun, Yuan-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-c2bce3006a547d348e9d324cb57ca8558fc24eb3b58b795de68fe6fe4cb0add23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Circuit faults</topic><topic>Control systems</topic><topic>Data models</topic><topic>Degradation</topic><topic>Effectiveness</topic><topic>Fault diagnosis</topic><topic>fault prognostics</topic><topic>Mapping</topic><topic>Nonlinear control</topic><topic>Paper machines</topic><topic>Prediction algorithms</topic><topic>remaining useful life prediction</topic><topic>Stochastic processes</topic><topic>Wet ends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Youxuan</creatorcontrib><creatorcontrib>Yao, Lina</creatorcontrib><creatorcontrib>Sun, Yuan-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Youxuan</au><au>Yao, Lina</au><au>Sun, Yuan-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis and Prognostics of Stochastic Distribution Systems</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>71</volume><issue>7</issue><spage>3378</spage><epage>3382</epage><pages>3378-3382</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>A novel fusion method is proposed for fault diagnosis and prognosis in nonlinear stochastic distribution control systems. Technically, a mapping relationship between fault increments and system output increments is established. The fault diagnosis algorithm that relies only on system output increments is obtained using the least squares theory, effectively addressing the diagnosis problem of fast-varying faults. In the case of unknown fault forms, a long short-term memory network is utilized to capture the long-term dependency relationship of the system output increment. This establishes a self-mapping relationship of the system output increment, thereby enabling multistep ahead prediction of the system output. The fault diagnosis algorithm is integrated with long short-term memory networks in a particle filtering framework, achieving multistep ahead prediction of fault magnitude and remaining useful life. The effectiveness of the proposed algorithm is validated in the wet end control system of a paper machine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2024.3359308</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0001-5978-0190</orcidid><orcidid>https://orcid.org/0000-0002-3828-1018</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2024-07, Vol.71 (7), p.3378-3382
issn 1549-7747
1558-3791
language eng
recordid cdi_crossref_primary_10_1109_TCSII_2024_3359308
source IEEE Electronic Library (IEL)
subjects Algorithms
Circuit faults
Control systems
Data models
Degradation
Effectiveness
Fault diagnosis
fault prognostics
Mapping
Nonlinear control
Paper machines
Prediction algorithms
remaining useful life prediction
Stochastic processes
Wet ends
title Fault Diagnosis and Prognostics of Stochastic Distribution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A19%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20and%20Prognostics%20of%20Stochastic%20Distribution%20Systems&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Gao,%20Youxuan&rft.date=2024-07-01&rft.volume=71&rft.issue=7&rft.spage=3378&rft.epage=3382&rft.pages=3378-3382&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2024.3359308&rft_dat=%3Cproquest_RIE%3E3075426985%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075426985&rft_id=info:pmid/&rft_ieee_id=10415868&rfr_iscdi=true