Energy-Constrained Confidentiality Fusion Estimation Against Eavesdroppers

This brief studies energy-constrained confidentiality fusion estimation problem in presence of eavesdroppers, where all data that is transmitted from sensors to fusion center may be collected by eavesdroppers through wireless channels. To prevent eavesdropping, an injection method based on artificia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2022-02, Vol.69 (2), p.624-628
Hauptverfasser: Xu, Daxing, Yan, Xinhao, Chen, Bo, Yu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 2
container_start_page 624
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 69
creator Xu, Daxing
Yan, Xinhao
Chen, Bo
Yu, Li
description This brief studies energy-constrained confidentiality fusion estimation problem in presence of eavesdroppers, where all data that is transmitted from sensors to fusion center may be collected by eavesdroppers through wireless channels. To prevent eavesdropping, an injection method based on artificial noise is proposed, but the insertion of noises will consume more sensor energy, which can add the design difficulty under energy constraints. In this case, the stochastic sensor data triggers are adopted to reduce the communication rate between the local sensors and the fusion center. Subsequently, a sufficient condition is derived to guarantee the effective noise insertion strategy under certain triggers. Moreover, by selecting appropriate trigger threshold for each sensor with fixed encryption level, it is derived that how to make the eavesdroppers' local/fusion estimation error covariance unbound while the user's expected error remains the boundedness. Finally, the single generator infinite power system is employed to show the effectiveness of the proposed methods.
doi_str_mv 10.1109/TCSII.2021.3102327
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2021_3102327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506912</ieee_id><sourcerecordid>2623470568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3c820e5b72956d96c409f88eb2de4283a18121b25d1e78440651804764bbfb483</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDnFXtuxfayiAEWVOFDOVn42lauSBNtF6tuT0IrTzkozu6OPkHtGF4xR87TJP1arBVBgC84ocFAXZMak1ClXhl1OWphUKaGuyU0IO0rBUA4z8lZ06LfHNO-7EH3pOmySUbeuwS66cu_iMXk-BNd3SRGi-yrjJJfb0RliUpQ_GBrfDwP6cEuu2nIf8O485-Tzudjkr-n6_WWVL9dpDUbGlNcaKMpKjVvWmKwW1LRaYwUNCtC8ZJoBq0A2DJUWgmaSaSpUJqqqrYTmc_J4ujv4_vuAIdpdf_Dd-NJCBlwoKrPJBSdX7fsQPLZ28GN9f7SM2omZ_WNmJ2b2zGwMPZxCDhH_A0bSzDDgv1HQZ5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623470568</pqid></control><display><type>article</type><title>Energy-Constrained Confidentiality Fusion Estimation Against Eavesdroppers</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Daxing ; Yan, Xinhao ; Chen, Bo ; Yu, Li</creator><creatorcontrib>Xu, Daxing ; Yan, Xinhao ; Chen, Bo ; Yu, Li</creatorcontrib><description>This brief studies energy-constrained confidentiality fusion estimation problem in presence of eavesdroppers, where all data that is transmitted from sensors to fusion center may be collected by eavesdroppers through wireless channels. To prevent eavesdropping, an injection method based on artificial noise is proposed, but the insertion of noises will consume more sensor energy, which can add the design difficulty under energy constraints. In this case, the stochastic sensor data triggers are adopted to reduce the communication rate between the local sensors and the fusion center. Subsequently, a sufficient condition is derived to guarantee the effective noise insertion strategy under certain triggers. Moreover, by selecting appropriate trigger threshold for each sensor with fixed encryption level, it is derived that how to make the eavesdroppers' local/fusion estimation error covariance unbound while the user's expected error remains the boundedness. Finally, the single generator infinite power system is employed to show the effectiveness of the proposed methods.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2021.3102327</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial noise ; Channel estimation ; Circuits and systems ; Confidentiality ; Constraints ; cyber-physical systems ; Data privacy ; Decoding ; distributed fusion estimation ; Eavesdropping ; energy constraints ; Estimation ; Insertion ; Sensors ; Signal to noise ratio</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2022-02, Vol.69 (2), p.624-628</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3c820e5b72956d96c409f88eb2de4283a18121b25d1e78440651804764bbfb483</citedby><cites>FETCH-LOGICAL-c295t-3c820e5b72956d96c409f88eb2de4283a18121b25d1e78440651804764bbfb483</cites><orcidid>0000-0003-3889-3863 ; 0000-0002-9699-7006 ; 0000-0001-6150-3881 ; 0000-0003-4202-3377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506912$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506912$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Daxing</creatorcontrib><creatorcontrib>Yan, Xinhao</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><title>Energy-Constrained Confidentiality Fusion Estimation Against Eavesdroppers</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>This brief studies energy-constrained confidentiality fusion estimation problem in presence of eavesdroppers, where all data that is transmitted from sensors to fusion center may be collected by eavesdroppers through wireless channels. To prevent eavesdropping, an injection method based on artificial noise is proposed, but the insertion of noises will consume more sensor energy, which can add the design difficulty under energy constraints. In this case, the stochastic sensor data triggers are adopted to reduce the communication rate between the local sensors and the fusion center. Subsequently, a sufficient condition is derived to guarantee the effective noise insertion strategy under certain triggers. Moreover, by selecting appropriate trigger threshold for each sensor with fixed encryption level, it is derived that how to make the eavesdroppers' local/fusion estimation error covariance unbound while the user's expected error remains the boundedness. Finally, the single generator infinite power system is employed to show the effectiveness of the proposed methods.</description><subject>Artificial noise</subject><subject>Channel estimation</subject><subject>Circuits and systems</subject><subject>Confidentiality</subject><subject>Constraints</subject><subject>cyber-physical systems</subject><subject>Data privacy</subject><subject>Decoding</subject><subject>distributed fusion estimation</subject><subject>Eavesdropping</subject><subject>energy constraints</subject><subject>Estimation</subject><subject>Insertion</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDnFXtuxfayiAEWVOFDOVn42lauSBNtF6tuT0IrTzkozu6OPkHtGF4xR87TJP1arBVBgC84ocFAXZMak1ClXhl1OWphUKaGuyU0IO0rBUA4z8lZ06LfHNO-7EH3pOmySUbeuwS66cu_iMXk-BNd3SRGi-yrjJJfb0RliUpQ_GBrfDwP6cEuu2nIf8O485-Tzudjkr-n6_WWVL9dpDUbGlNcaKMpKjVvWmKwW1LRaYwUNCtC8ZJoBq0A2DJUWgmaSaSpUJqqqrYTmc_J4ujv4_vuAIdpdf_Dd-NJCBlwoKrPJBSdX7fsQPLZ28GN9f7SM2omZ_WNmJ2b2zGwMPZxCDhH_A0bSzDDgv1HQZ5M</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Xu, Daxing</creator><creator>Yan, Xinhao</creator><creator>Chen, Bo</creator><creator>Yu, Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3889-3863</orcidid><orcidid>https://orcid.org/0000-0002-9699-7006</orcidid><orcidid>https://orcid.org/0000-0001-6150-3881</orcidid><orcidid>https://orcid.org/0000-0003-4202-3377</orcidid></search><sort><creationdate>20220201</creationdate><title>Energy-Constrained Confidentiality Fusion Estimation Against Eavesdroppers</title><author>Xu, Daxing ; Yan, Xinhao ; Chen, Bo ; Yu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3c820e5b72956d96c409f88eb2de4283a18121b25d1e78440651804764bbfb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial noise</topic><topic>Channel estimation</topic><topic>Circuits and systems</topic><topic>Confidentiality</topic><topic>Constraints</topic><topic>cyber-physical systems</topic><topic>Data privacy</topic><topic>Decoding</topic><topic>distributed fusion estimation</topic><topic>Eavesdropping</topic><topic>energy constraints</topic><topic>Estimation</topic><topic>Insertion</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Daxing</creatorcontrib><creatorcontrib>Yan, Xinhao</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Yu, Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Daxing</au><au>Yan, Xinhao</au><au>Chen, Bo</au><au>Yu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Constrained Confidentiality Fusion Estimation Against Eavesdroppers</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>69</volume><issue>2</issue><spage>624</spage><epage>628</epage><pages>624-628</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>This brief studies energy-constrained confidentiality fusion estimation problem in presence of eavesdroppers, where all data that is transmitted from sensors to fusion center may be collected by eavesdroppers through wireless channels. To prevent eavesdropping, an injection method based on artificial noise is proposed, but the insertion of noises will consume more sensor energy, which can add the design difficulty under energy constraints. In this case, the stochastic sensor data triggers are adopted to reduce the communication rate between the local sensors and the fusion center. Subsequently, a sufficient condition is derived to guarantee the effective noise insertion strategy under certain triggers. Moreover, by selecting appropriate trigger threshold for each sensor with fixed encryption level, it is derived that how to make the eavesdroppers' local/fusion estimation error covariance unbound while the user's expected error remains the boundedness. Finally, the single generator infinite power system is employed to show the effectiveness of the proposed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2021.3102327</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3889-3863</orcidid><orcidid>https://orcid.org/0000-0002-9699-7006</orcidid><orcidid>https://orcid.org/0000-0001-6150-3881</orcidid><orcidid>https://orcid.org/0000-0003-4202-3377</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2022-02, Vol.69 (2), p.624-628
issn 1549-7747
1558-3791
language eng
recordid cdi_crossref_primary_10_1109_TCSII_2021_3102327
source IEEE Electronic Library (IEL)
subjects Artificial noise
Channel estimation
Circuits and systems
Confidentiality
Constraints
cyber-physical systems
Data privacy
Decoding
distributed fusion estimation
Eavesdropping
energy constraints
Estimation
Insertion
Sensors
Signal to noise ratio
title Energy-Constrained Confidentiality Fusion Estimation Against Eavesdroppers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Constrained%20Confidentiality%20Fusion%20Estimation%20Against%20Eavesdroppers&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Xu,%20Daxing&rft.date=2022-02-01&rft.volume=69&rft.issue=2&rft.spage=624&rft.epage=628&rft.pages=624-628&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2021.3102327&rft_dat=%3Cproquest_RIE%3E2623470568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623470568&rft_id=info:pmid/&rft_ieee_id=9506912&rfr_iscdi=true