A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron
With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Iz...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-04, Vol.68 (4), p.1398-1402 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1402 |
---|---|
container_issue | 4 |
container_start_page | 1398 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 68 |
creator | Pu, Junran Goh, Wang Ling Nambiar, Vishnu P. Chong, Yi Sheng Do, Anh Tuan |
description | With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively. |
doi_str_mv | 10.1109/TCSII.2020.3023825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2020_3023825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195442</ieee_id><sourcerecordid>2506603963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X9RGHCgnRB_C5WcvdKOKK7RbjvxeE-HTuw_nuST5CbimMKAX1sCwXs9mIAYMRB8YLJs7IgApRpFwqen64M5VKmclLchXjBoAp4GxApuNk7r_T0scumbpmnS7XwffNetd3ycQ1rqu2yQSja9rE18mj8wGrrYuds8li5z5c2ySv2AffXpOLutpGvDnlkLw_Py3LaTp_e5mV43lqmRJdyrjJQVYrK0wBhVFCyNpgnltj7CqTxlS0kLk0BcIKC05RISrIoLZgDcWKD8n98e8u-K8eY6c3vg_tflIzAXkOXOV832LHlg0-xoC13gX3WYUfTUEfjOk_Y_pgTJ-M7aG7I-QQ8R9QVIksY_wX5-lnbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506603963</pqid></control><display><type>article</type><title>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</title><source>IEEE Electronic Library (IEL)</source><creator>Pu, Junran ; Goh, Wang Ling ; Nambiar, Vishnu P. ; Chong, Yi Sheng ; Do, Anh Tuan</creator><creatorcontrib>Pu, Junran ; Goh, Wang Ling ; Nambiar, Vishnu P. ; Chong, Yi Sheng ; Do, Anh Tuan</creatorcontrib><description>With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3023825</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>biological neuron model ; Biological system modeling ; Brain modeling ; Computational modeling ; digital implementation ; FPGA ; Hardware ; Izhikevich neuron model ; Low cost ; Mathematical model ; Neurons ; Spiking ; Spiking neural networks ; Subtraction</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-04, Vol.68 (4), p.1398-1402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</citedby><cites>FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</cites><orcidid>0000-0001-7466-8941 ; 0000-0002-7434-8582 ; 0000-0002-8320-6818 ; 0000-0003-4136-6570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9195442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pu, Junran</creatorcontrib><creatorcontrib>Goh, Wang Ling</creatorcontrib><creatorcontrib>Nambiar, Vishnu P.</creatorcontrib><creatorcontrib>Chong, Yi Sheng</creatorcontrib><creatorcontrib>Do, Anh Tuan</creatorcontrib><title>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively.</description><subject>biological neuron model</subject><subject>Biological system modeling</subject><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>digital implementation</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Izhikevich neuron model</subject><subject>Low cost</subject><subject>Mathematical model</subject><subject>Neurons</subject><subject>Spiking</subject><subject>Spiking neural networks</subject><subject>Subtraction</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X9RGHCgnRB_C5WcvdKOKK7RbjvxeE-HTuw_nuST5CbimMKAX1sCwXs9mIAYMRB8YLJs7IgApRpFwqen64M5VKmclLchXjBoAp4GxApuNk7r_T0scumbpmnS7XwffNetd3ycQ1rqu2yQSja9rE18mj8wGrrYuds8li5z5c2ySv2AffXpOLutpGvDnlkLw_Py3LaTp_e5mV43lqmRJdyrjJQVYrK0wBhVFCyNpgnltj7CqTxlS0kLk0BcIKC05RISrIoLZgDcWKD8n98e8u-K8eY6c3vg_tflIzAXkOXOV832LHlg0-xoC13gX3WYUfTUEfjOk_Y_pgTJ-M7aG7I-QQ8R9QVIksY_wX5-lnbA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Pu, Junran</creator><creator>Goh, Wang Ling</creator><creator>Nambiar, Vishnu P.</creator><creator>Chong, Yi Sheng</creator><creator>Do, Anh Tuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7466-8941</orcidid><orcidid>https://orcid.org/0000-0002-7434-8582</orcidid><orcidid>https://orcid.org/0000-0002-8320-6818</orcidid><orcidid>https://orcid.org/0000-0003-4136-6570</orcidid></search><sort><creationdate>20210401</creationdate><title>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</title><author>Pu, Junran ; Goh, Wang Ling ; Nambiar, Vishnu P. ; Chong, Yi Sheng ; Do, Anh Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biological neuron model</topic><topic>Biological system modeling</topic><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>digital implementation</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Izhikevich neuron model</topic><topic>Low cost</topic><topic>Mathematical model</topic><topic>Neurons</topic><topic>Spiking</topic><topic>Spiking neural networks</topic><topic>Subtraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Junran</creatorcontrib><creatorcontrib>Goh, Wang Ling</creatorcontrib><creatorcontrib>Nambiar, Vishnu P.</creatorcontrib><creatorcontrib>Chong, Yi Sheng</creatorcontrib><creatorcontrib>Do, Anh Tuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pu, Junran</au><au>Goh, Wang Ling</au><au>Nambiar, Vishnu P.</au><au>Chong, Yi Sheng</au><au>Do, Anh Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>68</volume><issue>4</issue><spage>1398</spage><epage>1402</epage><pages>1398-1402</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3023825</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7466-8941</orcidid><orcidid>https://orcid.org/0000-0002-7434-8582</orcidid><orcidid>https://orcid.org/0000-0002-8320-6818</orcidid><orcidid>https://orcid.org/0000-0003-4136-6570</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2021-04, Vol.68 (4), p.1398-1402 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSII_2020_3023825 |
source | IEEE Electronic Library (IEL) |
subjects | biological neuron model Biological system modeling Brain modeling Computational modeling digital implementation FPGA Hardware Izhikevich neuron model Low cost Mathematical model Neurons Spiking Spiking neural networks Subtraction |
title | A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low-Cost%20High-Throughput%20Digital%20Design%20of%20Biorealistic%20Spiking%20Neuron&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Pu,%20Junran&rft.date=2021-04-01&rft.volume=68&rft.issue=4&rft.spage=1398&rft.epage=1402&rft.pages=1398-1402&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3023825&rft_dat=%3Cproquest_RIE%3E2506603963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506603963&rft_id=info:pmid/&rft_ieee_id=9195442&rfr_iscdi=true |