A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron

With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Iz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-04, Vol.68 (4), p.1398-1402
Hauptverfasser: Pu, Junran, Goh, Wang Ling, Nambiar, Vishnu P., Chong, Yi Sheng, Do, Anh Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1402
container_issue 4
container_start_page 1398
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 68
creator Pu, Junran
Goh, Wang Ling
Nambiar, Vishnu P.
Chong, Yi Sheng
Do, Anh Tuan
description With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively.
doi_str_mv 10.1109/TCSII.2020.3023825
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2020_3023825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195442</ieee_id><sourcerecordid>2506603963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X9RGHCgnRB_C5WcvdKOKK7RbjvxeE-HTuw_nuST5CbimMKAX1sCwXs9mIAYMRB8YLJs7IgApRpFwqen64M5VKmclLchXjBoAp4GxApuNk7r_T0scumbpmnS7XwffNetd3ycQ1rqu2yQSja9rE18mj8wGrrYuds8li5z5c2ySv2AffXpOLutpGvDnlkLw_Py3LaTp_e5mV43lqmRJdyrjJQVYrK0wBhVFCyNpgnltj7CqTxlS0kLk0BcIKC05RISrIoLZgDcWKD8n98e8u-K8eY6c3vg_tflIzAXkOXOV832LHlg0-xoC13gX3WYUfTUEfjOk_Y_pgTJ-M7aG7I-QQ8R9QVIksY_wX5-lnbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506603963</pqid></control><display><type>article</type><title>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</title><source>IEEE Electronic Library (IEL)</source><creator>Pu, Junran ; Goh, Wang Ling ; Nambiar, Vishnu P. ; Chong, Yi Sheng ; Do, Anh Tuan</creator><creatorcontrib>Pu, Junran ; Goh, Wang Ling ; Nambiar, Vishnu P. ; Chong, Yi Sheng ; Do, Anh Tuan</creatorcontrib><description>With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3023825</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>biological neuron model ; Biological system modeling ; Brain modeling ; Computational modeling ; digital implementation ; FPGA ; Hardware ; Izhikevich neuron model ; Low cost ; Mathematical model ; Neurons ; Spiking ; Spiking neural networks ; Subtraction</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-04, Vol.68 (4), p.1398-1402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</citedby><cites>FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</cites><orcidid>0000-0001-7466-8941 ; 0000-0002-7434-8582 ; 0000-0002-8320-6818 ; 0000-0003-4136-6570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9195442$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9195442$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pu, Junran</creatorcontrib><creatorcontrib>Goh, Wang Ling</creatorcontrib><creatorcontrib>Nambiar, Vishnu P.</creatorcontrib><creatorcontrib>Chong, Yi Sheng</creatorcontrib><creatorcontrib>Do, Anh Tuan</creatorcontrib><title>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively.</description><subject>biological neuron model</subject><subject>Biological system modeling</subject><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>digital implementation</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Izhikevich neuron model</subject><subject>Low cost</subject><subject>Mathematical model</subject><subject>Neurons</subject><subject>Spiking</subject><subject>Spiking neural networks</subject><subject>Subtraction</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AX1Z4vPwtl3X9RGHCgnRB_C5WcvdKOKK7RbjvxeE-HTuw_nuST5CbimMKAX1sCwXs9mIAYMRB8YLJs7IgApRpFwqen64M5VKmclLchXjBoAp4GxApuNk7r_T0scumbpmnS7XwffNetd3ycQ1rqu2yQSja9rE18mj8wGrrYuds8li5z5c2ySv2AffXpOLutpGvDnlkLw_Py3LaTp_e5mV43lqmRJdyrjJQVYrK0wBhVFCyNpgnltj7CqTxlS0kLk0BcIKC05RISrIoLZgDcWKD8n98e8u-K8eY6c3vg_tflIzAXkOXOV832LHlg0-xoC13gX3WYUfTUEfjOk_Y_pgTJ-M7aG7I-QQ8R9QVIksY_wX5-lnbA</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Pu, Junran</creator><creator>Goh, Wang Ling</creator><creator>Nambiar, Vishnu P.</creator><creator>Chong, Yi Sheng</creator><creator>Do, Anh Tuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7466-8941</orcidid><orcidid>https://orcid.org/0000-0002-7434-8582</orcidid><orcidid>https://orcid.org/0000-0002-8320-6818</orcidid><orcidid>https://orcid.org/0000-0003-4136-6570</orcidid></search><sort><creationdate>20210401</creationdate><title>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</title><author>Pu, Junran ; Goh, Wang Ling ; Nambiar, Vishnu P. ; Chong, Yi Sheng ; Do, Anh Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-23b607adc5b808b9557fbe66cbbcd47bba18767b8e0de831e9ee9040fc0cb1ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>biological neuron model</topic><topic>Biological system modeling</topic><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>digital implementation</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Izhikevich neuron model</topic><topic>Low cost</topic><topic>Mathematical model</topic><topic>Neurons</topic><topic>Spiking</topic><topic>Spiking neural networks</topic><topic>Subtraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Junran</creatorcontrib><creatorcontrib>Goh, Wang Ling</creatorcontrib><creatorcontrib>Nambiar, Vishnu P.</creatorcontrib><creatorcontrib>Chong, Yi Sheng</creatorcontrib><creatorcontrib>Do, Anh Tuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pu, Junran</au><au>Goh, Wang Ling</au><au>Nambiar, Vishnu P.</au><au>Chong, Yi Sheng</au><au>Do, Anh Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-04-01</date><risdate>2021</risdate><volume>68</volume><issue>4</issue><spage>1398</spage><epage>1402</epage><pages>1398-1402</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>With the ability to generate different spiking patterns, Izhikevich model has well been considered a computationally efficient and biologically plausible neuron model for applications such as brain dynamic behavior study. This brief presents a low-cost, high-throughput digital hardware design for Izhikevich neuron model. The proposed design requires only addition, subtraction and logic shifts operations to achieve the low hardware cost. The dynamic behaviors of both the proposed neuron model and the original Izhikevich model were analyzed using the phase portraits. The FPGA implementation results demonstrated that the proposed design can reproduce different spiking patterns with very high throughput. Compared to existing designs, the proposed design achieves the lowest slices and LUTs utilization, which are 73% and 11% lower than the latest design (HOMIN), respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3023825</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7466-8941</orcidid><orcidid>https://orcid.org/0000-0002-7434-8582</orcidid><orcidid>https://orcid.org/0000-0002-8320-6818</orcidid><orcidid>https://orcid.org/0000-0003-4136-6570</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2021-04, Vol.68 (4), p.1398-1402
issn 1549-7747
1558-3791
language eng
recordid cdi_crossref_primary_10_1109_TCSII_2020_3023825
source IEEE Electronic Library (IEL)
subjects biological neuron model
Biological system modeling
Brain modeling
Computational modeling
digital implementation
FPGA
Hardware
Izhikevich neuron model
Low cost
Mathematical model
Neurons
Spiking
Spiking neural networks
Subtraction
title A Low-Cost High-Throughput Digital Design of Biorealistic Spiking Neuron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low-Cost%20High-Throughput%20Digital%20Design%20of%20Biorealistic%20Spiking%20Neuron&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Pu,%20Junran&rft.date=2021-04-01&rft.volume=68&rft.issue=4&rft.spage=1398&rft.epage=1402&rft.pages=1398-1402&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3023825&rft_dat=%3Cproquest_RIE%3E2506603963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506603963&rft_id=info:pmid/&rft_ieee_id=9195442&rfr_iscdi=true