An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs
Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-01, Vol.68 (1), p.261-265 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 1 |
container_start_page | 261 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 68 |
creator | Xiao, Chenglong Wang, Shanshan Liu, Wanjun Wang, Xinlin Casseau, Emmanuel |
description | Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime. |
doi_str_mv | 10.1109/TCSII.2020.3000297 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2020_3000297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9109332</ieee_id><sourcerecordid>2472320089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</originalsourceid><addsrcrecordid>eNo9kFFPgzAUhYnRxDn9A_rSxCcfmKUXaPtIcLolS_aw-dy0pd1YGGCBxf17QZY93ZOb75zcezzvOcCzIMD8fZtulssZwQTPAGNMOL3xJkEUMR8oD24HHXKf0pDeew9NcxgQDGTibZISres2P8oCJcWucnm7PyJbOTQvu6Nxss3LHUqrsjS6NdmgTuYXbTq1c7LeNygvUaLPusg1-sjH3aN3Z2XRmKfLnHrfn_NtuvBX669lmqx8DRRaP7OKhSoDajWnWtEMxxZzxgLFLXAGJtZxpqMIuAQicUYthComNMyUDLWSMPXexty9LETt-h_cWVQyF4tkJYYdJoyFmESnoGdfR7Z21U9nmlYcqs6V_XmChJQAwZjxniIjpV3VNM7Ya2yAxVC0-C9aDEWLS9G96WU05caYq4H3NACBP5MaeSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472320089</pqid></control><display><type>article</type><title>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</title><source>IEEE/IET Electronic Library</source><creator>Xiao, Chenglong ; Wang, Shanshan ; Liu, Wanjun ; Wang, Xinlin ; Casseau, Emmanuel</creator><creatorcontrib>Xiao, Chenglong ; Wang, Shanshan ; Liu, Wanjun ; Wang, Xinlin ; Casseau, Emmanuel</creatorcontrib><description>Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3000297</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Algorithms ; Apexes ; Circuits and systems ; Computation ; Computational Complexity ; Computer Science ; connected convex subgraphs ; custom instruction ; custom instruction enumeration ; Directed acyclic graph ; Enumeration ; Extensibility ; extensible processors ; Graph theory ; Hardware Architecture ; Microprocessors ; Reconfigurable computing ; Reconfiguration ; Run time (computers) ; Runtime ; Search methods ; Terminology ; Time complexity</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-01, Vol.68 (1), p.261-265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</citedby><cites>FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</cites><orcidid>0000-0001-7216-749X ; 0000-0001-7013-4985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9109332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9109332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-02884025$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Chenglong</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Liu, Wanjun</creatorcontrib><creatorcontrib>Wang, Xinlin</creatorcontrib><creatorcontrib>Casseau, Emmanuel</creatorcontrib><title>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Circuits and systems</subject><subject>Computation</subject><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>connected convex subgraphs</subject><subject>custom instruction</subject><subject>custom instruction enumeration</subject><subject>Directed acyclic graph</subject><subject>Enumeration</subject><subject>Extensibility</subject><subject>extensible processors</subject><subject>Graph theory</subject><subject>Hardware Architecture</subject><subject>Microprocessors</subject><subject>Reconfigurable computing</subject><subject>Reconfiguration</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>Search methods</subject><subject>Terminology</subject><subject>Time complexity</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPgzAUhYnRxDn9A_rSxCcfmKUXaPtIcLolS_aw-dy0pd1YGGCBxf17QZY93ZOb75zcezzvOcCzIMD8fZtulssZwQTPAGNMOL3xJkEUMR8oD24HHXKf0pDeew9NcxgQDGTibZISres2P8oCJcWucnm7PyJbOTQvu6Nxss3LHUqrsjS6NdmgTuYXbTq1c7LeNygvUaLPusg1-sjH3aN3Z2XRmKfLnHrfn_NtuvBX669lmqx8DRRaP7OKhSoDajWnWtEMxxZzxgLFLXAGJtZxpqMIuAQicUYthComNMyUDLWSMPXexty9LETt-h_cWVQyF4tkJYYdJoyFmESnoGdfR7Z21U9nmlYcqs6V_XmChJQAwZjxniIjpV3VNM7Ya2yAxVC0-C9aDEWLS9G96WU05caYq4H3NACBP5MaeSg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xiao, Chenglong</creator><creator>Wang, Shanshan</creator><creator>Liu, Wanjun</creator><creator>Wang, Xinlin</creator><creator>Casseau, Emmanuel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7216-749X</orcidid><orcidid>https://orcid.org/0000-0001-7013-4985</orcidid></search><sort><creationdate>20210101</creationdate><title>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</title><author>Xiao, Chenglong ; Wang, Shanshan ; Liu, Wanjun ; Wang, Xinlin ; Casseau, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Circuits and systems</topic><topic>Computation</topic><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>connected convex subgraphs</topic><topic>custom instruction</topic><topic>custom instruction enumeration</topic><topic>Directed acyclic graph</topic><topic>Enumeration</topic><topic>Extensibility</topic><topic>extensible processors</topic><topic>Graph theory</topic><topic>Hardware Architecture</topic><topic>Microprocessors</topic><topic>Reconfigurable computing</topic><topic>Reconfiguration</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>Search methods</topic><topic>Terminology</topic><topic>Time complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Chenglong</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Liu, Wanjun</creatorcontrib><creatorcontrib>Wang, Xinlin</creatorcontrib><creatorcontrib>Casseau, Emmanuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Chenglong</au><au>Wang, Shanshan</au><au>Liu, Wanjun</au><au>Wang, Xinlin</au><au>Casseau, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>68</volume><issue>1</issue><spage>261</spage><epage>265</epage><pages>261-265</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3000297</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7216-749X</orcidid><orcidid>https://orcid.org/0000-0001-7013-4985</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2021-01, Vol.68 (1), p.261-265 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCSII_2020_3000297 |
source | IEEE/IET Electronic Library |
subjects | Acceleration Algorithms Apexes Circuits and systems Computation Computational Complexity Computer Science connected convex subgraphs custom instruction custom instruction enumeration Directed acyclic graph Enumeration Extensibility extensible processors Graph theory Hardware Architecture Microprocessors Reconfigurable computing Reconfiguration Run time (computers) Runtime Search methods Terminology Time complexity |
title | An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Algorithm%20for%20Enumerating%20Connected%20Convex%20Subgraphs%20in%20Acyclic%20Digraphs&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Xiao,%20Chenglong&rft.date=2021-01-01&rft.volume=68&rft.issue=1&rft.spage=261&rft.epage=265&rft.pages=261-265&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3000297&rft_dat=%3Cproquest_RIE%3E2472320089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472320089&rft_id=info:pmid/&rft_ieee_id=9109332&rfr_iscdi=true |