An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs

Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-01, Vol.68 (1), p.261-265
Hauptverfasser: Xiao, Chenglong, Wang, Shanshan, Liu, Wanjun, Wang, Xinlin, Casseau, Emmanuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 1
container_start_page 261
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 68
creator Xiao, Chenglong
Wang, Shanshan
Liu, Wanjun
Wang, Xinlin
Casseau, Emmanuel
description Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.
doi_str_mv 10.1109/TCSII.2020.3000297
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2020_3000297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9109332</ieee_id><sourcerecordid>2472320089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</originalsourceid><addsrcrecordid>eNo9kFFPgzAUhYnRxDn9A_rSxCcfmKUXaPtIcLolS_aw-dy0pd1YGGCBxf17QZY93ZOb75zcezzvOcCzIMD8fZtulssZwQTPAGNMOL3xJkEUMR8oD24HHXKf0pDeew9NcxgQDGTibZISres2P8oCJcWucnm7PyJbOTQvu6Nxss3LHUqrsjS6NdmgTuYXbTq1c7LeNygvUaLPusg1-sjH3aN3Z2XRmKfLnHrfn_NtuvBX669lmqx8DRRaP7OKhSoDajWnWtEMxxZzxgLFLXAGJtZxpqMIuAQicUYthComNMyUDLWSMPXexty9LETt-h_cWVQyF4tkJYYdJoyFmESnoGdfR7Z21U9nmlYcqs6V_XmChJQAwZjxniIjpV3VNM7Ya2yAxVC0-C9aDEWLS9G96WU05caYq4H3NACBP5MaeSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2472320089</pqid></control><display><type>article</type><title>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</title><source>IEEE/IET Electronic Library</source><creator>Xiao, Chenglong ; Wang, Shanshan ; Liu, Wanjun ; Wang, Xinlin ; Casseau, Emmanuel</creator><creatorcontrib>Xiao, Chenglong ; Wang, Shanshan ; Liu, Wanjun ; Wang, Xinlin ; Casseau, Emmanuel</creatorcontrib><description>Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2020.3000297</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Algorithms ; Apexes ; Circuits and systems ; Computation ; Computational Complexity ; Computer Science ; connected convex subgraphs ; custom instruction ; custom instruction enumeration ; Directed acyclic graph ; Enumeration ; Extensibility ; extensible processors ; Graph theory ; Hardware Architecture ; Microprocessors ; Reconfigurable computing ; Reconfiguration ; Run time (computers) ; Runtime ; Search methods ; Terminology ; Time complexity</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-01, Vol.68 (1), p.261-265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</citedby><cites>FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</cites><orcidid>0000-0001-7216-749X ; 0000-0001-7013-4985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9109332$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9109332$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-02884025$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Chenglong</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Liu, Wanjun</creatorcontrib><creatorcontrib>Wang, Xinlin</creatorcontrib><creatorcontrib>Casseau, Emmanuel</creatorcontrib><title>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Apexes</subject><subject>Circuits and systems</subject><subject>Computation</subject><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>connected convex subgraphs</subject><subject>custom instruction</subject><subject>custom instruction enumeration</subject><subject>Directed acyclic graph</subject><subject>Enumeration</subject><subject>Extensibility</subject><subject>extensible processors</subject><subject>Graph theory</subject><subject>Hardware Architecture</subject><subject>Microprocessors</subject><subject>Reconfigurable computing</subject><subject>Reconfiguration</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>Search methods</subject><subject>Terminology</subject><subject>Time complexity</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPgzAUhYnRxDn9A_rSxCcfmKUXaPtIcLolS_aw-dy0pd1YGGCBxf17QZY93ZOb75zcezzvOcCzIMD8fZtulssZwQTPAGNMOL3xJkEUMR8oD24HHXKf0pDeew9NcxgQDGTibZISres2P8oCJcWucnm7PyJbOTQvu6Nxss3LHUqrsjS6NdmgTuYXbTq1c7LeNygvUaLPusg1-sjH3aN3Z2XRmKfLnHrfn_NtuvBX669lmqx8DRRaP7OKhSoDajWnWtEMxxZzxgLFLXAGJtZxpqMIuAQicUYthComNMyUDLWSMPXexty9LETt-h_cWVQyF4tkJYYdJoyFmESnoGdfR7Z21U9nmlYcqs6V_XmChJQAwZjxniIjpV3VNM7Ya2yAxVC0-C9aDEWLS9G96WU05caYq4H3NACBP5MaeSg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xiao, Chenglong</creator><creator>Wang, Shanshan</creator><creator>Liu, Wanjun</creator><creator>Wang, Xinlin</creator><creator>Casseau, Emmanuel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7216-749X</orcidid><orcidid>https://orcid.org/0000-0001-7013-4985</orcidid></search><sort><creationdate>20210101</creationdate><title>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</title><author>Xiao, Chenglong ; Wang, Shanshan ; Liu, Wanjun ; Wang, Xinlin ; Casseau, Emmanuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-dfb84bd37fc97cb7d06f09881b9f3983e6c6dc5539a32a0d7f34b6274dba4cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Apexes</topic><topic>Circuits and systems</topic><topic>Computation</topic><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>connected convex subgraphs</topic><topic>custom instruction</topic><topic>custom instruction enumeration</topic><topic>Directed acyclic graph</topic><topic>Enumeration</topic><topic>Extensibility</topic><topic>extensible processors</topic><topic>Graph theory</topic><topic>Hardware Architecture</topic><topic>Microprocessors</topic><topic>Reconfigurable computing</topic><topic>Reconfiguration</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>Search methods</topic><topic>Terminology</topic><topic>Time complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Chenglong</creatorcontrib><creatorcontrib>Wang, Shanshan</creatorcontrib><creatorcontrib>Liu, Wanjun</creatorcontrib><creatorcontrib>Wang, Xinlin</creatorcontrib><creatorcontrib>Casseau, Emmanuel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Chenglong</au><au>Wang, Shanshan</au><au>Liu, Wanjun</au><au>Wang, Xinlin</au><au>Casseau, Emmanuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>68</volume><issue>1</issue><spage>261</spage><epage>265</epage><pages>261-265</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>Reconfigurable computing system is emerging as an important computing system for satisfying the present and future computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating connected convex subgraphs from a given application graph. In this brief, we propose a provable optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is theoretically proved to be O(Σ C∈CC(G) (|V(C)|+|E(C)|)), where CC(G) denotes the set of connected convex subgraphs in directed acyclic graph G, |V(C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively. Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2020.3000297</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7216-749X</orcidid><orcidid>https://orcid.org/0000-0001-7013-4985</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2021-01, Vol.68 (1), p.261-265
issn 1549-7747
1558-3791
language eng
recordid cdi_crossref_primary_10_1109_TCSII_2020_3000297
source IEEE/IET Electronic Library
subjects Acceleration
Algorithms
Apexes
Circuits and systems
Computation
Computational Complexity
Computer Science
connected convex subgraphs
custom instruction
custom instruction enumeration
Directed acyclic graph
Enumeration
Extensibility
extensible processors
Graph theory
Hardware Architecture
Microprocessors
Reconfigurable computing
Reconfiguration
Run time (computers)
Runtime
Search methods
Terminology
Time complexity
title An Optimal Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Algorithm%20for%20Enumerating%20Connected%20Convex%20Subgraphs%20in%20Acyclic%20Digraphs&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Xiao,%20Chenglong&rft.date=2021-01-01&rft.volume=68&rft.issue=1&rft.spage=261&rft.epage=265&rft.pages=261-265&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2020.3000297&rft_dat=%3Cproquest_RIE%3E2472320089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2472320089&rft_id=info:pmid/&rft_ieee_id=9109332&rfr_iscdi=true