Optimal Single Constant Multiplication Using Ternary Adders

The single constant coefficient multiplication is a frequently used operation in many numeric algorithms. Extensive previous work is available on how to reduce constant multiplications to additions, subtractions, and bit shifts. However, on previous work, only common two-input adders were used. As m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2018-07, Vol.65 (7), p.928-932
Hauptverfasser: Kumm, Martin, Gustafsson, Oscar, Garrido, Mario, Zipf, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 7
container_start_page 928
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 65
creator Kumm, Martin
Gustafsson, Oscar
Garrido, Mario
Zipf, Peter
description The single constant coefficient multiplication is a frequently used operation in many numeric algorithms. Extensive previous work is available on how to reduce constant multiplications to additions, subtractions, and bit shifts. However, on previous work, only common two-input adders were used. As modern field-programmable gate arrays (FPGAs) support efficient ternary adders, i.e., adders with three inputs, this brief investigates constant multiplications that are built from ternary adders in an optimal way. The results show that the multiplication with any constant up to 22 bits can be realized by only three ternary adders. Average adder reductions of more than 33% compared to optimal constant multiplication circuits using two-input adders are achieved for coefficient word sizes of more than five bits. Synthesis experiments show FPGA average slice reductions in the order of 25% and a similar or higher speed than their two-input adder counterparts.
doi_str_mv 10.1109/TCSII.2016.2631630
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCSII_2016_2631630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7752883</ieee_id><sourcerecordid>2061455084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a8e034c8bc2699f655569b4429206079060651e5fe8a1e0962024c7b3df6d5493</originalsourceid><addsrcrecordid>eNo9UFtLwzAUDqLgnP4BfSn43Jl7Gnwa9TaY7GGbryFt05FR25qkyP69mR17OefA-W58ANwjOEMIyqdNvl4sZhgiPsOcIE7gBZggxrKUCIkujzeVqRBUXIMb7_cQYgkJnoDnVR_st26StW13jUnyrvVBtyH5HJpg-8aWOtiuTbY-_pONca12h2ReVcb5W3BV68abu9Oegu3b6yb_SJer90U-X6YlISSkOjOQ0DIrSsylrDljjMuCUiwx5FDIODhDhtUm08hAyTHEtBQFqWpexdhkCtJR1_-afihU72Jid1CdturFfs1V53aqsYNCVPIsi_jHEd-77mcwPqh9N8TgjVfREVHGYEYjCo-o0nXeO1OfdRFUx1LVf6nqWKo6lRpJDyPJGmPOBCEYjr7kDwRkcUo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061455084</pqid></control><display><type>article</type><title>Optimal Single Constant Multiplication Using Ternary Adders</title><source>IEEE Electronic Library (IEL)</source><creator>Kumm, Martin ; Gustafsson, Oscar ; Garrido, Mario ; Zipf, Peter</creator><creatorcontrib>Kumm, Martin ; Gustafsson, Oscar ; Garrido, Mario ; Zipf, Peter</creatorcontrib><description>The single constant coefficient multiplication is a frequently used operation in many numeric algorithms. Extensive previous work is available on how to reduce constant multiplications to additions, subtractions, and bit shifts. However, on previous work, only common two-input adders were used. As modern field-programmable gate arrays (FPGAs) support efficient ternary adders, i.e., adders with three inputs, this brief investigates constant multiplications that are built from ternary adders in an optimal way. The results show that the multiplication with any constant up to 22 bits can be realized by only three ternary adders. Average adder reductions of more than 33% compared to optimal constant multiplication circuits using two-input adders are achieved for coefficient word sizes of more than five bits. Synthesis experiments show FPGA average slice reductions in the order of 25% and a similar or higher speed than their two-input adder counterparts.</description><identifier>ISSN: 1549-7747</identifier><identifier>ISSN: 1558-3791</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2016.2631630</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adders ; Arithmetic ; circuit optimization ; circuits ; Complexity theory ; digital arithmetic ; Field programmable gate arrays ; field-programmable gate arrays (FPGAs) ; fixed-point arithmetic optimization ; Gate arrays ; mathematics ; Multiplication ; Multiplication &amp; division ; multiplying circuits ; Optimization ; optimization methods ; Programmable logic controllers ; Signal processing algorithms ; Topology</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2018-07, Vol.65 (7), p.928-932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a8e034c8bc2699f655569b4429206079060651e5fe8a1e0962024c7b3df6d5493</citedby><cites>FETCH-LOGICAL-c333t-a8e034c8bc2699f655569b4429206079060651e5fe8a1e0962024c7b3df6d5493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7752883$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7752883$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149688$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumm, Martin</creatorcontrib><creatorcontrib>Gustafsson, Oscar</creatorcontrib><creatorcontrib>Garrido, Mario</creatorcontrib><creatorcontrib>Zipf, Peter</creatorcontrib><title>Optimal Single Constant Multiplication Using Ternary Adders</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>The single constant coefficient multiplication is a frequently used operation in many numeric algorithms. Extensive previous work is available on how to reduce constant multiplications to additions, subtractions, and bit shifts. However, on previous work, only common two-input adders were used. As modern field-programmable gate arrays (FPGAs) support efficient ternary adders, i.e., adders with three inputs, this brief investigates constant multiplications that are built from ternary adders in an optimal way. The results show that the multiplication with any constant up to 22 bits can be realized by only three ternary adders. Average adder reductions of more than 33% compared to optimal constant multiplication circuits using two-input adders are achieved for coefficient word sizes of more than five bits. Synthesis experiments show FPGA average slice reductions in the order of 25% and a similar or higher speed than their two-input adder counterparts.</description><subject>Adders</subject><subject>Arithmetic</subject><subject>circuit optimization</subject><subject>circuits</subject><subject>Complexity theory</subject><subject>digital arithmetic</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate arrays (FPGAs)</subject><subject>fixed-point arithmetic optimization</subject><subject>Gate arrays</subject><subject>mathematics</subject><subject>Multiplication</subject><subject>Multiplication &amp; division</subject><subject>multiplying circuits</subject><subject>Optimization</subject><subject>optimization methods</subject><subject>Programmable logic controllers</subject><subject>Signal processing algorithms</subject><subject>Topology</subject><issn>1549-7747</issn><issn>1558-3791</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UFtLwzAUDqLgnP4BfSn43Jl7Gnwa9TaY7GGbryFt05FR25qkyP69mR17OefA-W58ANwjOEMIyqdNvl4sZhgiPsOcIE7gBZggxrKUCIkujzeVqRBUXIMb7_cQYgkJnoDnVR_st26StW13jUnyrvVBtyH5HJpg-8aWOtiuTbY-_pONca12h2ReVcb5W3BV68abu9Oegu3b6yb_SJer90U-X6YlISSkOjOQ0DIrSsylrDljjMuCUiwx5FDIODhDhtUm08hAyTHEtBQFqWpexdhkCtJR1_-afihU72Jid1CdturFfs1V53aqsYNCVPIsi_jHEd-77mcwPqh9N8TgjVfREVHGYEYjCo-o0nXeO1OfdRFUx1LVf6nqWKo6lRpJDyPJGmPOBCEYjr7kDwRkcUo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Kumm, Martin</creator><creator>Gustafsson, Oscar</creator><creator>Garrido, Mario</creator><creator>Zipf, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope></search><sort><creationdate>20180701</creationdate><title>Optimal Single Constant Multiplication Using Ternary Adders</title><author>Kumm, Martin ; Gustafsson, Oscar ; Garrido, Mario ; Zipf, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a8e034c8bc2699f655569b4429206079060651e5fe8a1e0962024c7b3df6d5493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adders</topic><topic>Arithmetic</topic><topic>circuit optimization</topic><topic>circuits</topic><topic>Complexity theory</topic><topic>digital arithmetic</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate arrays (FPGAs)</topic><topic>fixed-point arithmetic optimization</topic><topic>Gate arrays</topic><topic>mathematics</topic><topic>Multiplication</topic><topic>Multiplication &amp; division</topic><topic>multiplying circuits</topic><topic>Optimization</topic><topic>optimization methods</topic><topic>Programmable logic controllers</topic><topic>Signal processing algorithms</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumm, Martin</creatorcontrib><creatorcontrib>Gustafsson, Oscar</creatorcontrib><creatorcontrib>Garrido, Mario</creatorcontrib><creatorcontrib>Zipf, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kumm, Martin</au><au>Gustafsson, Oscar</au><au>Garrido, Mario</au><au>Zipf, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Single Constant Multiplication Using Ternary Adders</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>65</volume><issue>7</issue><spage>928</spage><epage>932</epage><pages>928-932</pages><issn>1549-7747</issn><issn>1558-3791</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>The single constant coefficient multiplication is a frequently used operation in many numeric algorithms. Extensive previous work is available on how to reduce constant multiplications to additions, subtractions, and bit shifts. However, on previous work, only common two-input adders were used. As modern field-programmable gate arrays (FPGAs) support efficient ternary adders, i.e., adders with three inputs, this brief investigates constant multiplications that are built from ternary adders in an optimal way. The results show that the multiplication with any constant up to 22 bits can be realized by only three ternary adders. Average adder reductions of more than 33% compared to optimal constant multiplication circuits using two-input adders are achieved for coefficient word sizes of more than five bits. Synthesis experiments show FPGA average slice reductions in the order of 25% and a similar or higher speed than their two-input adder counterparts.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2016.2631630</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2018-07, Vol.65 (7), p.928-932
issn 1549-7747
1558-3791
1558-3791
language eng
recordid cdi_crossref_primary_10_1109_TCSII_2016_2631630
source IEEE Electronic Library (IEL)
subjects Adders
Arithmetic
circuit optimization
circuits
Complexity theory
digital arithmetic
Field programmable gate arrays
field-programmable gate arrays (FPGAs)
fixed-point arithmetic optimization
Gate arrays
mathematics
Multiplication
Multiplication & division
multiplying circuits
Optimization
optimization methods
Programmable logic controllers
Signal processing algorithms
Topology
title Optimal Single Constant Multiplication Using Ternary Adders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Single%20Constant%20Multiplication%20Using%20Ternary%20Adders&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Kumm,%20Martin&rft.date=2018-07-01&rft.volume=65&rft.issue=7&rft.spage=928&rft.epage=932&rft.pages=928-932&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2016.2631630&rft_dat=%3Cproquest_RIE%3E2061455084%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061455084&rft_id=info:pmid/&rft_ieee_id=7752883&rfr_iscdi=true