Cryogenic Characterization of LTCC Material in Millimeter-Wave Frequencies

This study presents room temperature and cryogenic (20 K) characterization of the electrical properties of the Ferro A6M-E material, manufactured using low-temperature co-fired ceramic (LTCC) technology, at W-band (75-110 GHz). The resonant ring method was used to design microstrip structures with r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2024-06, Vol.14 (6), p.1007-1014
Hauptverfasser: Vargas-Millalonco, Felipe, Martinez-Ledesma, Miguel, Reeves, Rodrigo, Rodriguez, Rafael, Paaso, Jaska, Lahti, Markku, Kaunisto, Mikko, Varonen, Mikko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1014
container_issue 6
container_start_page 1007
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 14
creator Vargas-Millalonco, Felipe
Martinez-Ledesma, Miguel
Reeves, Rodrigo
Rodriguez, Rafael
Paaso, Jaska
Lahti, Markku
Kaunisto, Mikko
Varonen, Mikko
description This study presents room temperature and cryogenic (20 K) characterization of the electrical properties of the Ferro A6M-E material, manufactured using low-temperature co-fired ceramic (LTCC) technology, at W-band (75-110 GHz). The resonant ring method was used to design microstrip structures with resonant frequencies at 80, 90, and 100 GHz on a single substrate. S-parameter measurements at the different physical temperatures were obtained. The relative permittivity and loss tangent parameters were calculated, obtaining the values of \varepsilon _{r} = 6.14 and \tan ~\delta = 0.0019 at 300 K and \varepsilon _{r} = 6.0 and \tan ~\delta = 0.002 for 20 K. The calculated dielectric properties show a small variability between room temperature and cryogenic conditions in the W-band. These results are highly relevant for the understanding of the electrical performance of Ferro A6M-E material, particularly in the context of mm- and sub-mm-wave applications for front-end radio astronomy receivers and space applications, both at room temperature and cryogenic conditions.
doi_str_mv 10.1109/TCPMT.2024.3400028
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2024_3400028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529232</ieee_id><sourcerecordid>3073301781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-b8b5fa9818a6489df8fcaa62a6fd231abfeae4960075a6f9c4e9ec1ef8493d3e3</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsNT-AXERcJ14ZyaPmaUE64MWXURcDrfTOzolTeokFeqvN7VFXN3D4Zx74GPskkPCOeibqnyZV4kAkSYyBQChTthI8CyPpVbZ6Z_O4JxNum41RCBTUIAcsacy7Np3aryNyg8MaHsK_ht73zZR66JZVZbRHPcm1pFvormva7-mwYjf8IuiaaDPLTXWU3fBzhzWHU2Od8xep3dV-RDPnu8fy9tZbEVa9PFCLTKHWnGFear00ilnEXOBuVsKyXHhCCnVOUCRDZ62KWmynJxKtVxKkmN2ffi7Ce2w3fVm1W5DM0waCYWUwAvFh5Q4pGxouy6QM5vg1xh2hoPZYzO_2MwemzliG0pXh5Inon-FTGghhfwBxKtpdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073301781</pqid></control><display><type>article</type><title>Cryogenic Characterization of LTCC Material in Millimeter-Wave Frequencies</title><source>IEEE Electronic Library (IEL)</source><creator>Vargas-Millalonco, Felipe ; Martinez-Ledesma, Miguel ; Reeves, Rodrigo ; Rodriguez, Rafael ; Paaso, Jaska ; Lahti, Markku ; Kaunisto, Mikko ; Varonen, Mikko</creator><creatorcontrib>Vargas-Millalonco, Felipe ; Martinez-Ledesma, Miguel ; Reeves, Rodrigo ; Rodriguez, Rafael ; Paaso, Jaska ; Lahti, Markku ; Kaunisto, Mikko ; Varonen, Mikko</creatorcontrib><description><![CDATA[This study presents room temperature and cryogenic (20 K) characterization of the electrical properties of the Ferro A6M-E material, manufactured using low-temperature co-fired ceramic (LTCC) technology, at W-band (75-110 GHz). The resonant ring method was used to design microstrip structures with resonant frequencies at 80, 90, and 100 GHz on a single substrate. S-parameter measurements at the different physical temperatures were obtained. The relative permittivity and loss tangent parameters were calculated, obtaining the values of <inline-formula> <tex-math notation="LaTeX">\varepsilon _{r} = 6.14 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\tan ~\delta = 0.0019 </tex-math></inline-formula> at 300 K and <inline-formula> <tex-math notation="LaTeX">\varepsilon _{r} = 6.0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\tan ~\delta = 0.002 </tex-math></inline-formula> for 20 K. The calculated dielectric properties show a small variability between room temperature and cryogenic conditions in the W-band. These results are highly relevant for the understanding of the electrical performance of Ferro A6M-E material, particularly in the context of mm- and sub-mm-wave applications for front-end radio astronomy receivers and space applications, both at room temperature and cryogenic conditions.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2024.3400028</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Ceramics ; Cryogenic ; Cryogenic temperature ; Cryogenics ; Dielectric properties ; Electrical properties ; loss tangent ; Low temperature ; low-temperature co-fired ceramic (LTCC) Ferro A6M-E ; Low-temperature plasmas ; Manufacturing ; Microstrip ; Millimeter waves ; Parameters ; Permittivity ; Permittivity measurement ; Probes ; Radio astronomy ; Radio frequency ; relative permittivity ; Resonant frequencies ; Resonant frequency ; Room temperature ; Space applications ; Substrates ; W-band</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2024-06, Vol.14 (6), p.1007-1014</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-b8b5fa9818a6489df8fcaa62a6fd231abfeae4960075a6f9c4e9ec1ef8493d3e3</cites><orcidid>0000-0002-7558-3613 ; 0000-0001-5704-271X ; 0000-0001-6932-1249 ; 0000-0002-6515-5092 ; 0000-0003-4481-8085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10529232$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vargas-Millalonco, Felipe</creatorcontrib><creatorcontrib>Martinez-Ledesma, Miguel</creatorcontrib><creatorcontrib>Reeves, Rodrigo</creatorcontrib><creatorcontrib>Rodriguez, Rafael</creatorcontrib><creatorcontrib>Paaso, Jaska</creatorcontrib><creatorcontrib>Lahti, Markku</creatorcontrib><creatorcontrib>Kaunisto, Mikko</creatorcontrib><creatorcontrib>Varonen, Mikko</creatorcontrib><title>Cryogenic Characterization of LTCC Material in Millimeter-Wave Frequencies</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[This study presents room temperature and cryogenic (20 K) characterization of the electrical properties of the Ferro A6M-E material, manufactured using low-temperature co-fired ceramic (LTCC) technology, at W-band (75-110 GHz). The resonant ring method was used to design microstrip structures with resonant frequencies at 80, 90, and 100 GHz on a single substrate. S-parameter measurements at the different physical temperatures were obtained. The relative permittivity and loss tangent parameters were calculated, obtaining the values of <inline-formula> <tex-math notation="LaTeX">\varepsilon _{r} = 6.14 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\tan ~\delta = 0.0019 </tex-math></inline-formula> at 300 K and <inline-formula> <tex-math notation="LaTeX">\varepsilon _{r} = 6.0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\tan ~\delta = 0.002 </tex-math></inline-formula> for 20 K. The calculated dielectric properties show a small variability between room temperature and cryogenic conditions in the W-band. These results are highly relevant for the understanding of the electrical performance of Ferro A6M-E material, particularly in the context of mm- and sub-mm-wave applications for front-end radio astronomy receivers and space applications, both at room temperature and cryogenic conditions.]]></description><subject>Ceramics</subject><subject>Cryogenic</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Dielectric properties</subject><subject>Electrical properties</subject><subject>loss tangent</subject><subject>Low temperature</subject><subject>low-temperature co-fired ceramic (LTCC) Ferro A6M-E</subject><subject>Low-temperature plasmas</subject><subject>Manufacturing</subject><subject>Microstrip</subject><subject>Millimeter waves</subject><subject>Parameters</subject><subject>Permittivity</subject><subject>Permittivity measurement</subject><subject>Probes</subject><subject>Radio astronomy</subject><subject>Radio frequency</subject><subject>relative permittivity</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Room temperature</subject><subject>Space applications</subject><subject>Substrates</subject><subject>W-band</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRsNT-AXERcJ14ZyaPmaUE64MWXURcDrfTOzolTeokFeqvN7VFXN3D4Zx74GPskkPCOeibqnyZV4kAkSYyBQChTthI8CyPpVbZ6Z_O4JxNum41RCBTUIAcsacy7Np3aryNyg8MaHsK_ht73zZR66JZVZbRHPcm1pFvormva7-mwYjf8IuiaaDPLTXWU3fBzhzWHU2Od8xep3dV-RDPnu8fy9tZbEVa9PFCLTKHWnGFear00ilnEXOBuVsKyXHhCCnVOUCRDZ62KWmynJxKtVxKkmN2ffi7Ce2w3fVm1W5DM0waCYWUwAvFh5Q4pGxouy6QM5vg1xh2hoPZYzO_2MwemzliG0pXh5Inon-FTGghhfwBxKtpdQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Vargas-Millalonco, Felipe</creator><creator>Martinez-Ledesma, Miguel</creator><creator>Reeves, Rodrigo</creator><creator>Rodriguez, Rafael</creator><creator>Paaso, Jaska</creator><creator>Lahti, Markku</creator><creator>Kaunisto, Mikko</creator><creator>Varonen, Mikko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7558-3613</orcidid><orcidid>https://orcid.org/0000-0001-5704-271X</orcidid><orcidid>https://orcid.org/0000-0001-6932-1249</orcidid><orcidid>https://orcid.org/0000-0002-6515-5092</orcidid><orcidid>https://orcid.org/0000-0003-4481-8085</orcidid></search><sort><creationdate>20240601</creationdate><title>Cryogenic Characterization of LTCC Material in Millimeter-Wave Frequencies</title><author>Vargas-Millalonco, Felipe ; Martinez-Ledesma, Miguel ; Reeves, Rodrigo ; Rodriguez, Rafael ; Paaso, Jaska ; Lahti, Markku ; Kaunisto, Mikko ; Varonen, Mikko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-b8b5fa9818a6489df8fcaa62a6fd231abfeae4960075a6f9c4e9ec1ef8493d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramics</topic><topic>Cryogenic</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Dielectric properties</topic><topic>Electrical properties</topic><topic>loss tangent</topic><topic>Low temperature</topic><topic>low-temperature co-fired ceramic (LTCC) Ferro A6M-E</topic><topic>Low-temperature plasmas</topic><topic>Manufacturing</topic><topic>Microstrip</topic><topic>Millimeter waves</topic><topic>Parameters</topic><topic>Permittivity</topic><topic>Permittivity measurement</topic><topic>Probes</topic><topic>Radio astronomy</topic><topic>Radio frequency</topic><topic>relative permittivity</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Room temperature</topic><topic>Space applications</topic><topic>Substrates</topic><topic>W-band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vargas-Millalonco, Felipe</creatorcontrib><creatorcontrib>Martinez-Ledesma, Miguel</creatorcontrib><creatorcontrib>Reeves, Rodrigo</creatorcontrib><creatorcontrib>Rodriguez, Rafael</creatorcontrib><creatorcontrib>Paaso, Jaska</creatorcontrib><creatorcontrib>Lahti, Markku</creatorcontrib><creatorcontrib>Kaunisto, Mikko</creatorcontrib><creatorcontrib>Varonen, Mikko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vargas-Millalonco, Felipe</au><au>Martinez-Ledesma, Miguel</au><au>Reeves, Rodrigo</au><au>Rodriguez, Rafael</au><au>Paaso, Jaska</au><au>Lahti, Markku</au><au>Kaunisto, Mikko</au><au>Varonen, Mikko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic Characterization of LTCC Material in Millimeter-Wave Frequencies</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>14</volume><issue>6</issue><spage>1007</spage><epage>1014</epage><pages>1007-1014</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[This study presents room temperature and cryogenic (20 K) characterization of the electrical properties of the Ferro A6M-E material, manufactured using low-temperature co-fired ceramic (LTCC) technology, at W-band (75-110 GHz). The resonant ring method was used to design microstrip structures with resonant frequencies at 80, 90, and 100 GHz on a single substrate. S-parameter measurements at the different physical temperatures were obtained. The relative permittivity and loss tangent parameters were calculated, obtaining the values of <inline-formula> <tex-math notation="LaTeX">\varepsilon _{r} = 6.14 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\tan ~\delta = 0.0019 </tex-math></inline-formula> at 300 K and <inline-formula> <tex-math notation="LaTeX">\varepsilon _{r} = 6.0 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\tan ~\delta = 0.002 </tex-math></inline-formula> for 20 K. The calculated dielectric properties show a small variability between room temperature and cryogenic conditions in the W-band. These results are highly relevant for the understanding of the electrical performance of Ferro A6M-E material, particularly in the context of mm- and sub-mm-wave applications for front-end radio astronomy receivers and space applications, both at room temperature and cryogenic conditions.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2024.3400028</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7558-3613</orcidid><orcidid>https://orcid.org/0000-0001-5704-271X</orcidid><orcidid>https://orcid.org/0000-0001-6932-1249</orcidid><orcidid>https://orcid.org/0000-0002-6515-5092</orcidid><orcidid>https://orcid.org/0000-0003-4481-8085</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2024-06, Vol.14 (6), p.1007-1014
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2024_3400028
source IEEE Electronic Library (IEL)
subjects Ceramics
Cryogenic
Cryogenic temperature
Cryogenics
Dielectric properties
Electrical properties
loss tangent
Low temperature
low-temperature co-fired ceramic (LTCC) Ferro A6M-E
Low-temperature plasmas
Manufacturing
Microstrip
Millimeter waves
Parameters
Permittivity
Permittivity measurement
Probes
Radio astronomy
Radio frequency
relative permittivity
Resonant frequencies
Resonant frequency
Room temperature
Space applications
Substrates
W-band
title Cryogenic Characterization of LTCC Material in Millimeter-Wave Frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T12%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20Characterization%20of%20LTCC%20Material%20in%20Millimeter-Wave%20Frequencies&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Vargas-Millalonco,%20Felipe&rft.date=2024-06-01&rft.volume=14&rft.issue=6&rft.spage=1007&rft.epage=1014&rft.pages=1007-1014&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2024.3400028&rft_dat=%3Cproquest_RIE%3E3073301781%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073301781&rft_id=info:pmid/&rft_ieee_id=10529232&rfr_iscdi=true