A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management
The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-11, Vol.12 (11), p.1791-1798 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1798 |
---|---|
container_issue | 11 |
container_start_page | 1791 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 12 |
creator | Patel, Est Dev Kumar, Subrata |
description | The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance. |
doi_str_mv | 10.1109/TCPMT.2022.3225470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2022_3225470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9965201</ieee_id><sourcerecordid>2758716018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EElXpH4DFEnOLP-okHqMIKFIrOgSxYTnOuXWVL-xk6L8npVVvuRve5073IPRIyYJSIl_ybLvJF4wwtuCMiWVMbtCEURHNuUzE7XUW5B7NQjiQsURCYsIn6CfFme5cVWl_xPlQAN4OVdC9a3Z4BbrHW9cB_nb9HqfhWNfQe2dwWjpdjCGDs71uGqgCtq3H-R58rSu80Y3eQQ1N_4DurK4CzC59ir7eXvNsNV9_vn9k6XpumBT9vLQkLrQGSYXVggkSCcoIRAB0yXTBNBUkjiNutLXcFmVpCjCWcglWljYxfIqez3s73_4OEHp1aAffjCcVi0US04jQZEyxc8r4NgQPVnXe1ePnihJ1Uqn-VaqTSnVROUJPZ8gBwBWQMhKMUP4Hv5pwcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758716018</pqid></control><display><type>article</type><title>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</title><source>IEEE Electronic Library (IEL)</source><creator>Patel, Est Dev ; Kumar, Subrata</creator><creatorcontrib>Patel, Est Dev ; Kumar, Subrata</creatorcontrib><description>The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2022.3225470</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acetone ; Adiabatic flow ; Asymmetry ; Capillary tubes ; Channels ; Closed loops ; Electronics cooling ; Equilibrium flow ; Heat ; Heat pipes ; Heat transfer ; Horizontal orientation ; Inclination angle ; passive thermal management ; pulsating heat pipe (PHP) ; Thermal energy ; Thermal management ; Thermal management of electronics ; Thermal resistance ; Two phase flow ; two-phase flow heat transfer ; Vertical orientation ; Working fluids</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-11, Vol.12 (11), p.1791-1798</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</citedby><cites>FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</cites><orcidid>0000-0003-2246-6277 ; 0000-0001-7046-508X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9965201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9965201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patel, Est Dev</creatorcontrib><creatorcontrib>Kumar, Subrata</creatorcontrib><title>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance.</description><subject>Acetone</subject><subject>Adiabatic flow</subject><subject>Asymmetry</subject><subject>Capillary tubes</subject><subject>Channels</subject><subject>Closed loops</subject><subject>Electronics cooling</subject><subject>Equilibrium flow</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Horizontal orientation</subject><subject>Inclination angle</subject><subject>passive thermal management</subject><subject>pulsating heat pipe (PHP)</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal management of electronics</subject><subject>Thermal resistance</subject><subject>Two phase flow</subject><subject>two-phase flow heat transfer</subject><subject>Vertical orientation</subject><subject>Working fluids</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EElXpH4DFEnOLP-okHqMIKFIrOgSxYTnOuXWVL-xk6L8npVVvuRve5073IPRIyYJSIl_ybLvJF4wwtuCMiWVMbtCEURHNuUzE7XUW5B7NQjiQsURCYsIn6CfFme5cVWl_xPlQAN4OVdC9a3Z4BbrHW9cB_nb9HqfhWNfQe2dwWjpdjCGDs71uGqgCtq3H-R58rSu80Y3eQQ1N_4DurK4CzC59ir7eXvNsNV9_vn9k6XpumBT9vLQkLrQGSYXVggkSCcoIRAB0yXTBNBUkjiNutLXcFmVpCjCWcglWljYxfIqez3s73_4OEHp1aAffjCcVi0US04jQZEyxc8r4NgQPVnXe1ePnihJ1Uqn-VaqTSnVROUJPZ8gBwBWQMhKMUP4Hv5pwcQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Patel, Est Dev</creator><creator>Kumar, Subrata</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2246-6277</orcidid><orcidid>https://orcid.org/0000-0001-7046-508X</orcidid></search><sort><creationdate>20221101</creationdate><title>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</title><author>Patel, Est Dev ; Kumar, Subrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetone</topic><topic>Adiabatic flow</topic><topic>Asymmetry</topic><topic>Capillary tubes</topic><topic>Channels</topic><topic>Closed loops</topic><topic>Electronics cooling</topic><topic>Equilibrium flow</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Horizontal orientation</topic><topic>Inclination angle</topic><topic>passive thermal management</topic><topic>pulsating heat pipe (PHP)</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal management of electronics</topic><topic>Thermal resistance</topic><topic>Two phase flow</topic><topic>two-phase flow heat transfer</topic><topic>Vertical orientation</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Est Dev</creatorcontrib><creatorcontrib>Kumar, Subrata</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patel, Est Dev</au><au>Kumar, Subrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>12</volume><issue>11</issue><spage>1791</spage><epage>1798</epage><pages>1791-1798</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2022.3225470</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2246-6277</orcidid><orcidid>https://orcid.org/0000-0001-7046-508X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-11, Vol.12 (11), p.1791-1798 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2022_3225470 |
source | IEEE Electronic Library (IEL) |
subjects | Acetone Adiabatic flow Asymmetry Capillary tubes Channels Closed loops Electronics cooling Equilibrium flow Heat Heat pipes Heat transfer Horizontal orientation Inclination angle passive thermal management pulsating heat pipe (PHP) Thermal energy Thermal management Thermal management of electronics Thermal resistance Two phase flow two-phase flow heat transfer Vertical orientation Working fluids |
title | A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Capillary%20Tube%20Pulsating%20Heat%20Pipe%20With%20Asymmetric%20Adiabatic%20Channels%20for%20Thermal%20Management&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Patel,%20Est%20Dev&rft.date=2022-11-01&rft.volume=12&rft.issue=11&rft.spage=1791&rft.epage=1798&rft.pages=1791-1798&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2022.3225470&rft_dat=%3Cproquest_RIE%3E2758716018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758716018&rft_id=info:pmid/&rft_ieee_id=9965201&rfr_iscdi=true |