A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management

The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-11, Vol.12 (11), p.1791-1798
Hauptverfasser: Patel, Est Dev, Kumar, Subrata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1798
container_issue 11
container_start_page 1791
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 12
creator Patel, Est Dev
Kumar, Subrata
description The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance.
doi_str_mv 10.1109/TCPMT.2022.3225470
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2022_3225470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9965201</ieee_id><sourcerecordid>2758716018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EElXpH4DFEnOLP-okHqMIKFIrOgSxYTnOuXWVL-xk6L8npVVvuRve5073IPRIyYJSIl_ybLvJF4wwtuCMiWVMbtCEURHNuUzE7XUW5B7NQjiQsURCYsIn6CfFme5cVWl_xPlQAN4OVdC9a3Z4BbrHW9cB_nb9HqfhWNfQe2dwWjpdjCGDs71uGqgCtq3H-R58rSu80Y3eQQ1N_4DurK4CzC59ir7eXvNsNV9_vn9k6XpumBT9vLQkLrQGSYXVggkSCcoIRAB0yXTBNBUkjiNutLXcFmVpCjCWcglWljYxfIqez3s73_4OEHp1aAffjCcVi0US04jQZEyxc8r4NgQPVnXe1ePnihJ1Uqn-VaqTSnVROUJPZ8gBwBWQMhKMUP4Hv5pwcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758716018</pqid></control><display><type>article</type><title>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</title><source>IEEE Electronic Library (IEL)</source><creator>Patel, Est Dev ; Kumar, Subrata</creator><creatorcontrib>Patel, Est Dev ; Kumar, Subrata</creatorcontrib><description>The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2022.3225470</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acetone ; Adiabatic flow ; Asymmetry ; Capillary tubes ; Channels ; Closed loops ; Electronics cooling ; Equilibrium flow ; Heat ; Heat pipes ; Heat transfer ; Horizontal orientation ; Inclination angle ; passive thermal management ; pulsating heat pipe (PHP) ; Thermal energy ; Thermal management ; Thermal management of electronics ; Thermal resistance ; Two phase flow ; two-phase flow heat transfer ; Vertical orientation ; Working fluids</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-11, Vol.12 (11), p.1791-1798</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</citedby><cites>FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</cites><orcidid>0000-0003-2246-6277 ; 0000-0001-7046-508X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9965201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9965201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Patel, Est Dev</creatorcontrib><creatorcontrib>Kumar, Subrata</creatorcontrib><title>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance.</description><subject>Acetone</subject><subject>Adiabatic flow</subject><subject>Asymmetry</subject><subject>Capillary tubes</subject><subject>Channels</subject><subject>Closed loops</subject><subject>Electronics cooling</subject><subject>Equilibrium flow</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Heat transfer</subject><subject>Horizontal orientation</subject><subject>Inclination angle</subject><subject>passive thermal management</subject><subject>pulsating heat pipe (PHP)</subject><subject>Thermal energy</subject><subject>Thermal management</subject><subject>Thermal management of electronics</subject><subject>Thermal resistance</subject><subject>Two phase flow</subject><subject>two-phase flow heat transfer</subject><subject>Vertical orientation</subject><subject>Working fluids</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EElXpH4DFEnOLP-okHqMIKFIrOgSxYTnOuXWVL-xk6L8npVVvuRve5073IPRIyYJSIl_ybLvJF4wwtuCMiWVMbtCEURHNuUzE7XUW5B7NQjiQsURCYsIn6CfFme5cVWl_xPlQAN4OVdC9a3Z4BbrHW9cB_nb9HqfhWNfQe2dwWjpdjCGDs71uGqgCtq3H-R58rSu80Y3eQQ1N_4DurK4CzC59ir7eXvNsNV9_vn9k6XpumBT9vLQkLrQGSYXVggkSCcoIRAB0yXTBNBUkjiNutLXcFmVpCjCWcglWljYxfIqez3s73_4OEHp1aAffjCcVi0US04jQZEyxc8r4NgQPVnXe1ePnihJ1Uqn-VaqTSnVROUJPZ8gBwBWQMhKMUP4Hv5pwcQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Patel, Est Dev</creator><creator>Kumar, Subrata</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2246-6277</orcidid><orcidid>https://orcid.org/0000-0001-7046-508X</orcidid></search><sort><creationdate>20221101</creationdate><title>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</title><author>Patel, Est Dev ; Kumar, Subrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-df07baae915fa525065120e6ee142ab2a1507763caff3fbddcbecf139ef9df8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetone</topic><topic>Adiabatic flow</topic><topic>Asymmetry</topic><topic>Capillary tubes</topic><topic>Channels</topic><topic>Closed loops</topic><topic>Electronics cooling</topic><topic>Equilibrium flow</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Heat transfer</topic><topic>Horizontal orientation</topic><topic>Inclination angle</topic><topic>passive thermal management</topic><topic>pulsating heat pipe (PHP)</topic><topic>Thermal energy</topic><topic>Thermal management</topic><topic>Thermal management of electronics</topic><topic>Thermal resistance</topic><topic>Two phase flow</topic><topic>two-phase flow heat transfer</topic><topic>Vertical orientation</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Est Dev</creatorcontrib><creatorcontrib>Kumar, Subrata</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Patel, Est Dev</au><au>Kumar, Subrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>12</volume><issue>11</issue><spage>1791</spage><epage>1798</epage><pages>1791-1798</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>The two-phase flow passive thermal management device, an asymmetric (adiabatic channel) closed-loop pulsating heat pipe (aCLPHP), has been investigated experimentally. The thermo-hydrodynamic behavior of a pulsating heat pipe (PHP) strongly depends on various operating and geometric parameters. In this effort, asymmetry has been adopted to promote the unidirectional two-phase oscillatory motion of the working fluid. In the present study, simultaneous pressure and temperature variations under gradual and sudden heat loads are monitored to estimate thermal performance. The effects of inclination angles (IAs), heat loads, working fluids, and filling ratios (FRs) on thermal performance have been demonstrated using average thermal resistance. In a two-turn (four-channel) aCLPHP in bottom heating mode, acetone and water were used as working fluids within 50%-70% of FRs. The results show that the startup phenomena of two-phase flow and pseudo-steady-state temperature were achieved using acetone at a 60% FR up to 30° angle from a horizontal orientation. In the vertical orientation, the working fluid water at 60% FR performed well under a sudden heat load of 50 W. Adding asymmetric adiabatic channels to a PHP can be a simple and inexpensive way to improve its thermal performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2022.3225470</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2246-6277</orcidid><orcidid>https://orcid.org/0000-0001-7046-508X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-11, Vol.12 (11), p.1791-1798
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2022_3225470
source IEEE Electronic Library (IEL)
subjects Acetone
Adiabatic flow
Asymmetry
Capillary tubes
Channels
Closed loops
Electronics cooling
Equilibrium flow
Heat
Heat pipes
Heat transfer
Horizontal orientation
Inclination angle
passive thermal management
pulsating heat pipe (PHP)
Thermal energy
Thermal management
Thermal management of electronics
Thermal resistance
Two phase flow
two-phase flow heat transfer
Vertical orientation
Working fluids
title A Capillary Tube Pulsating Heat Pipe With Asymmetric Adiabatic Channels for Thermal Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A10%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Capillary%20Tube%20Pulsating%20Heat%20Pipe%20With%20Asymmetric%20Adiabatic%20Channels%20for%20Thermal%20Management&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Patel,%20Est%20Dev&rft.date=2022-11-01&rft.volume=12&rft.issue=11&rft.spage=1791&rft.epage=1798&rft.pages=1791-1798&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2022.3225470&rft_dat=%3Cproquest_RIE%3E2758716018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758716018&rft_id=info:pmid/&rft_ieee_id=9965201&rfr_iscdi=true