Heat Spreader Thermal Switch for Power Converter Isothermalization
Power module heat dissipation with spatial inhomogeneity and induced nonuniform temperature distribution presents a challenging concern for system reliability due to thermo-mechanical stresses. These reliability challenges are especially important for nonplanar designs using 3-D packaging principles...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-07, Vol.12 (7), p.1063-1081 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1081 |
---|---|
container_issue | 7 |
container_start_page | 1063 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 12 |
creator | Yang, Tianyu Diao, Fei Mantooth, H. Alan Zhao, Yue King, William P. Miljkovic, Nenad |
description | Power module heat dissipation with spatial inhomogeneity and induced nonuniform temperature distribution presents a challenging concern for system reliability due to thermo-mechanical stresses. These reliability challenges are especially important for nonplanar designs using 3-D packaging principles. Here, we develop a heat spreader thermal switch capable of actively reducing temperature gradients between silicon carbide (SiC) devices in a three-level T-type power converter, which can change depending on electronic operating conditions. The heat spreader thermal switch consists of a stainless-steel (SS) heat spreader and a copper sliding switch embedded within the spreader. Heat transfer from the SiC devices and within the spreader can be controlled by moving the slider between positions within the spreader. To understand heat transfer mechanisms and design the heat spreader thermal switch, we conducted 3-D finite element method simulations to calculate the minimum attainable temperature difference between SiC devices. We used the finite element simulation to quantify the reduction in junction temperature swing during dynamic operation and coupled the results to the Coffin-Manson reliability model to quantify lifetime to failure. We integrated the heat spreader thermal switch with one phase of a three-phase T-type converter and demonstrated isothermalization at different working conditions. At 2.4-kW converter power, each hot SiC device dissipated 4.7 W of heat, resulting in a device case temperature of 43 °C, with each cold SiC device dissipating 1.7 W at 38 °C. The device-to-device temperature difference was decreased from 5 °C to 0 °C by moving the switch a distance of 20 mm. Finite volume method (FVM) simulations of the conjugate heat transfer problem validate the experimental results and support analysis of key performance parameters. This work demonstrates successful isothermalization of a power converter with an active heat spreader thermal switch and develops simulation and design guidelines for successful electro-thermal codesign and implementation of thermal switches for other electronics applications for which isothermalization and enhanced device reliability is a key issue. |
doi_str_mv | 10.1109/TCPMT.2022.3185972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2022_3185972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9805727</ieee_id><sourcerecordid>2695152579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-614f7156793811bd509a2b38df87c5693304030e22a12fca0d92b2695739bdf03</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGr_gF4WPG-dJM0mOeqitlCx0PUcsrsJ3dI2NUkt-utN3eJcZmDeezN8CN1iGGMM8qEqF2_VmAAhY4oFk5xcoAHBrMipFOzyf2ZwjUYhrCEVE8CBDtDT1OiYLffe6Nb4rFoZv9WbbHnsYrPKrPPZwh3TonS7L-NjmmbBxV7V_ejYud0NurJ6E8zo3Ifo4-W5Kqf5_P11Vj7O84ZSGfMCTyxPj3BJBcZ1y0BqUlPRWsEbVkhKYQIUDCEaE9toaCWpSSEZp7JuLdAhuu9z9959HkyIau0OfpdOqpMMM8JS9hCRXtV4F4I3Vu19t9X-W2FQJ1zqD5c64VJnXMl015s6Y8y_QQpgnHD6C5oPZLk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2695152579</pqid></control><display><type>article</type><title>Heat Spreader Thermal Switch for Power Converter Isothermalization</title><source>IEEE Electronic Library Online</source><creator>Yang, Tianyu ; Diao, Fei ; Mantooth, H. Alan ; Zhao, Yue ; King, William P. ; Miljkovic, Nenad</creator><creatorcontrib>Yang, Tianyu ; Diao, Fei ; Mantooth, H. Alan ; Zhao, Yue ; King, William P. ; Miljkovic, Nenad</creatorcontrib><description>Power module heat dissipation with spatial inhomogeneity and induced nonuniform temperature distribution presents a challenging concern for system reliability due to thermo-mechanical stresses. These reliability challenges are especially important for nonplanar designs using 3-D packaging principles. Here, we develop a heat spreader thermal switch capable of actively reducing temperature gradients between silicon carbide (SiC) devices in a three-level T-type power converter, which can change depending on electronic operating conditions. The heat spreader thermal switch consists of a stainless-steel (SS) heat spreader and a copper sliding switch embedded within the spreader. Heat transfer from the SiC devices and within the spreader can be controlled by moving the slider between positions within the spreader. To understand heat transfer mechanisms and design the heat spreader thermal switch, we conducted 3-D finite element method simulations to calculate the minimum attainable temperature difference between SiC devices. We used the finite element simulation to quantify the reduction in junction temperature swing during dynamic operation and coupled the results to the Coffin-Manson reliability model to quantify lifetime to failure. We integrated the heat spreader thermal switch with one phase of a three-phase T-type converter and demonstrated isothermalization at different working conditions. At 2.4-kW converter power, each hot SiC device dissipated 4.7 W of heat, resulting in a device case temperature of 43 °C, with each cold SiC device dissipating 1.7 W at 38 °C. The device-to-device temperature difference was decreased from 5 °C to 0 °C by moving the switch a distance of 20 mm. Finite volume method (FVM) simulations of the conjugate heat transfer problem validate the experimental results and support analysis of key performance parameters. This work demonstrates successful isothermalization of a power converter with an active heat spreader thermal switch and develops simulation and design guidelines for successful electro-thermal codesign and implementation of thermal switches for other electronics applications for which isothermalization and enhanced device reliability is a key issue.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2022.3185972</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Co-design ; Dissipation ; Electro-thermal ; Electronic packaging thermal management ; Finite element method ; Finite volume method ; heat conduction ; Heat sinks ; Heat transfer ; Heating systems ; Inhomogeneity ; Packaging design ; Power converters ; power electronics ; reliability ; Reliability analysis ; Silicon carbide ; silicon carbide (SiC) ; Simulation ; Stainless steels ; Steel converters ; stress ; Switches ; System reliability ; Temperature control ; Temperature distribution ; Temperature gradients ; thermal management ; wide bandgap</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-07, Vol.12 (7), p.1063-1081</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-614f7156793811bd509a2b38df87c5693304030e22a12fca0d92b2695739bdf03</citedby><cites>FETCH-LOGICAL-c339t-614f7156793811bd509a2b38df87c5693304030e22a12fca0d92b2695739bdf03</cites><orcidid>0000-0002-4712-9819 ; 0000-0001-7107-0506 ; 0000-0001-8606-1290 ; 0000-0001-6447-5345 ; 0000-0003-2109-3413 ; 0000-0002-0866-3680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9805727$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Yang, Tianyu</creatorcontrib><creatorcontrib>Diao, Fei</creatorcontrib><creatorcontrib>Mantooth, H. Alan</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>King, William P.</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><title>Heat Spreader Thermal Switch for Power Converter Isothermalization</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Power module heat dissipation with spatial inhomogeneity and induced nonuniform temperature distribution presents a challenging concern for system reliability due to thermo-mechanical stresses. These reliability challenges are especially important for nonplanar designs using 3-D packaging principles. Here, we develop a heat spreader thermal switch capable of actively reducing temperature gradients between silicon carbide (SiC) devices in a three-level T-type power converter, which can change depending on electronic operating conditions. The heat spreader thermal switch consists of a stainless-steel (SS) heat spreader and a copper sliding switch embedded within the spreader. Heat transfer from the SiC devices and within the spreader can be controlled by moving the slider between positions within the spreader. To understand heat transfer mechanisms and design the heat spreader thermal switch, we conducted 3-D finite element method simulations to calculate the minimum attainable temperature difference between SiC devices. We used the finite element simulation to quantify the reduction in junction temperature swing during dynamic operation and coupled the results to the Coffin-Manson reliability model to quantify lifetime to failure. We integrated the heat spreader thermal switch with one phase of a three-phase T-type converter and demonstrated isothermalization at different working conditions. At 2.4-kW converter power, each hot SiC device dissipated 4.7 W of heat, resulting in a device case temperature of 43 °C, with each cold SiC device dissipating 1.7 W at 38 °C. The device-to-device temperature difference was decreased from 5 °C to 0 °C by moving the switch a distance of 20 mm. Finite volume method (FVM) simulations of the conjugate heat transfer problem validate the experimental results and support analysis of key performance parameters. This work demonstrates successful isothermalization of a power converter with an active heat spreader thermal switch and develops simulation and design guidelines for successful electro-thermal codesign and implementation of thermal switches for other electronics applications for which isothermalization and enhanced device reliability is a key issue.</description><subject>Co-design</subject><subject>Dissipation</subject><subject>Electro-thermal</subject><subject>Electronic packaging thermal management</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>heat conduction</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Heating systems</subject><subject>Inhomogeneity</subject><subject>Packaging design</subject><subject>Power converters</subject><subject>power electronics</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Silicon carbide</subject><subject>silicon carbide (SiC)</subject><subject>Simulation</subject><subject>Stainless steels</subject><subject>Steel converters</subject><subject>stress</subject><subject>Switches</subject><subject>System reliability</subject><subject>Temperature control</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>thermal management</subject><subject>wide bandgap</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWGr_gF4WPG-dJM0mOeqitlCx0PUcsrsJ3dI2NUkt-utN3eJcZmDeezN8CN1iGGMM8qEqF2_VmAAhY4oFk5xcoAHBrMipFOzyf2ZwjUYhrCEVE8CBDtDT1OiYLffe6Nb4rFoZv9WbbHnsYrPKrPPZwh3TonS7L-NjmmbBxV7V_ejYud0NurJ6E8zo3Ifo4-W5Kqf5_P11Vj7O84ZSGfMCTyxPj3BJBcZ1y0BqUlPRWsEbVkhKYQIUDCEaE9toaCWpSSEZp7JuLdAhuu9z9959HkyIau0OfpdOqpMMM8JS9hCRXtV4F4I3Vu19t9X-W2FQJ1zqD5c64VJnXMl015s6Y8y_QQpgnHD6C5oPZLk</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Yang, Tianyu</creator><creator>Diao, Fei</creator><creator>Mantooth, H. Alan</creator><creator>Zhao, Yue</creator><creator>King, William P.</creator><creator>Miljkovic, Nenad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4712-9819</orcidid><orcidid>https://orcid.org/0000-0001-7107-0506</orcidid><orcidid>https://orcid.org/0000-0001-8606-1290</orcidid><orcidid>https://orcid.org/0000-0001-6447-5345</orcidid><orcidid>https://orcid.org/0000-0003-2109-3413</orcidid><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid></search><sort><creationdate>20220701</creationdate><title>Heat Spreader Thermal Switch for Power Converter Isothermalization</title><author>Yang, Tianyu ; Diao, Fei ; Mantooth, H. Alan ; Zhao, Yue ; King, William P. ; Miljkovic, Nenad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-614f7156793811bd509a2b38df87c5693304030e22a12fca0d92b2695739bdf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Co-design</topic><topic>Dissipation</topic><topic>Electro-thermal</topic><topic>Electronic packaging thermal management</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>heat conduction</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Heating systems</topic><topic>Inhomogeneity</topic><topic>Packaging design</topic><topic>Power converters</topic><topic>power electronics</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Silicon carbide</topic><topic>silicon carbide (SiC)</topic><topic>Simulation</topic><topic>Stainless steels</topic><topic>Steel converters</topic><topic>stress</topic><topic>Switches</topic><topic>System reliability</topic><topic>Temperature control</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>thermal management</topic><topic>wide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tianyu</creatorcontrib><creatorcontrib>Diao, Fei</creatorcontrib><creatorcontrib>Mantooth, H. Alan</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>King, William P.</creatorcontrib><creatorcontrib>Miljkovic, Nenad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tianyu</au><au>Diao, Fei</au><au>Mantooth, H. Alan</au><au>Zhao, Yue</au><au>King, William P.</au><au>Miljkovic, Nenad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Spreader Thermal Switch for Power Converter Isothermalization</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>1063</spage><epage>1081</epage><pages>1063-1081</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Power module heat dissipation with spatial inhomogeneity and induced nonuniform temperature distribution presents a challenging concern for system reliability due to thermo-mechanical stresses. These reliability challenges are especially important for nonplanar designs using 3-D packaging principles. Here, we develop a heat spreader thermal switch capable of actively reducing temperature gradients between silicon carbide (SiC) devices in a three-level T-type power converter, which can change depending on electronic operating conditions. The heat spreader thermal switch consists of a stainless-steel (SS) heat spreader and a copper sliding switch embedded within the spreader. Heat transfer from the SiC devices and within the spreader can be controlled by moving the slider between positions within the spreader. To understand heat transfer mechanisms and design the heat spreader thermal switch, we conducted 3-D finite element method simulations to calculate the minimum attainable temperature difference between SiC devices. We used the finite element simulation to quantify the reduction in junction temperature swing during dynamic operation and coupled the results to the Coffin-Manson reliability model to quantify lifetime to failure. We integrated the heat spreader thermal switch with one phase of a three-phase T-type converter and demonstrated isothermalization at different working conditions. At 2.4-kW converter power, each hot SiC device dissipated 4.7 W of heat, resulting in a device case temperature of 43 °C, with each cold SiC device dissipating 1.7 W at 38 °C. The device-to-device temperature difference was decreased from 5 °C to 0 °C by moving the switch a distance of 20 mm. Finite volume method (FVM) simulations of the conjugate heat transfer problem validate the experimental results and support analysis of key performance parameters. This work demonstrates successful isothermalization of a power converter with an active heat spreader thermal switch and develops simulation and design guidelines for successful electro-thermal codesign and implementation of thermal switches for other electronics applications for which isothermalization and enhanced device reliability is a key issue.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2022.3185972</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4712-9819</orcidid><orcidid>https://orcid.org/0000-0001-7107-0506</orcidid><orcidid>https://orcid.org/0000-0001-8606-1290</orcidid><orcidid>https://orcid.org/0000-0001-6447-5345</orcidid><orcidid>https://orcid.org/0000-0003-2109-3413</orcidid><orcidid>https://orcid.org/0000-0002-0866-3680</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-07, Vol.12 (7), p.1063-1081 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2022_3185972 |
source | IEEE Electronic Library Online |
subjects | Co-design Dissipation Electro-thermal Electronic packaging thermal management Finite element method Finite volume method heat conduction Heat sinks Heat transfer Heating systems Inhomogeneity Packaging design Power converters power electronics reliability Reliability analysis Silicon carbide silicon carbide (SiC) Simulation Stainless steels Steel converters stress Switches System reliability Temperature control Temperature distribution Temperature gradients thermal management wide bandgap |
title | Heat Spreader Thermal Switch for Power Converter Isothermalization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Spreader%20Thermal%20Switch%20for%20Power%20Converter%20Isothermalization&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Yang,%20Tianyu&rft.date=2022-07-01&rft.volume=12&rft.issue=7&rft.spage=1063&rft.epage=1081&rft.pages=1063-1081&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2022.3185972&rft_dat=%3Cproquest_cross%3E2695152579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2695152579&rft_id=info:pmid/&rft_ieee_id=9805727&rfr_iscdi=true |