Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging

To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-05, Vol.12 (5), p.723-730
Hauptverfasser: Wu, Tianxiang, Tian, Wenya, Dou, Long, Jin, Zhong, Liu, Junfu, Liu, Yunpeng, Chen, Taotao, Xiao, Jinqing, Li, Junhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 730
container_issue 5
container_start_page 723
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 12
creator Wu, Tianxiang
Tian, Wenya
Dou, Long
Jin, Zhong
Liu, Junfu
Liu, Yunpeng
Chen, Taotao
Xiao, Jinqing
Li, Junhui
description To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 \Omega . Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 \mu \text{m} . The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process.
doi_str_mv 10.1109/TCPMT.2022.3167734
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2022_3167734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9758693</ieee_id><sourcerecordid>2669159289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-9af996546a1aef02003145b9c76a64ae4f392ed44da733a7d1b7c2b5bff262bc3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEElXpH4CLJc4pfsR2fEShPKRW9BDE0XKcdZrSxMVJD_x70qbqXnYP882OJoruCZ4TgtVTnq1X-ZxiSueMCClZchVNKOEiZirl15eb49to1nVbPAxPscRsEnWLHdg--AbsxrS1NTu0huB8aExrAXmHVrUNfh98ASiHrkffdb9B2aHwdYlWpmqh92EDfuerE_1imj0EVLcjCKP94IzWxv6Yqm6ru-jGmV0Hs_OeRl-vizx7j5efbx_Z8zK2RJA-VsYpJXgiDDHgMMWYkYQXykphRGIgcUxRKJOkNJIxI0tSSEsLXjhHBS0sm0aPo--Q_vcwZNdbfwjt8FJTIRThiqZqUNFRNaTtugBO70PdmPCnCdbHfvWpX33sV5_7HaCHEaoB4AIoyVOhGPsH9it4tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669159289</pqid></control><display><type>article</type><title>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Tianxiang ; Tian, Wenya ; Dou, Long ; Jin, Zhong ; Liu, Junfu ; Liu, Yunpeng ; Chen, Taotao ; Xiao, Jinqing ; Li, Junhui</creator><creatorcontrib>Wu, Tianxiang ; Tian, Wenya ; Dou, Long ; Jin, Zhong ; Liu, Junfu ; Liu, Yunpeng ; Chen, Taotao ; Xiao, Jinqing ; Li, Junhui</creatorcontrib><description><![CDATA[To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula>. Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2022.3167734</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circular cylinders ; Contact pressure ; Contact resistance ; Cuboid magnetorheological (MR) damper ; Damping ; Electric contacts ; Electrical properties ; electromechanical performance ; Electronic packaging ; flexible loading ; Loading ; microprobe test system ; Packaging ; Probes ; Shock absorbers ; Testing</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-05, Vol.12 (5), p.723-730</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c161t-9af996546a1aef02003145b9c76a64ae4f392ed44da733a7d1b7c2b5bff262bc3</cites><orcidid>0000-0003-1522-8369 ; 0000-0001-5196-9960 ; 0000-0002-5626-000X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9758693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9758693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Tianxiang</creatorcontrib><creatorcontrib>Tian, Wenya</creatorcontrib><creatorcontrib>Dou, Long</creatorcontrib><creatorcontrib>Jin, Zhong</creatorcontrib><creatorcontrib>Liu, Junfu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Chen, Taotao</creatorcontrib><creatorcontrib>Xiao, Jinqing</creatorcontrib><creatorcontrib>Li, Junhui</creatorcontrib><title>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula>. Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process.]]></description><subject>Circular cylinders</subject><subject>Contact pressure</subject><subject>Contact resistance</subject><subject>Cuboid magnetorheological (MR) damper</subject><subject>Damping</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>electromechanical performance</subject><subject>Electronic packaging</subject><subject>flexible loading</subject><subject>Loading</subject><subject>microprobe test system</subject><subject>Packaging</subject><subject>Probes</subject><subject>Shock absorbers</subject><subject>Testing</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEElXpH4CLJc4pfsR2fEShPKRW9BDE0XKcdZrSxMVJD_x70qbqXnYP882OJoruCZ4TgtVTnq1X-ZxiSueMCClZchVNKOEiZirl15eb49to1nVbPAxPscRsEnWLHdg--AbsxrS1NTu0huB8aExrAXmHVrUNfh98ASiHrkffdb9B2aHwdYlWpmqh92EDfuerE_1imj0EVLcjCKP94IzWxv6Yqm6ru-jGmV0Hs_OeRl-vizx7j5efbx_Z8zK2RJA-VsYpJXgiDDHgMMWYkYQXykphRGIgcUxRKJOkNJIxI0tSSEsLXjhHBS0sm0aPo--Q_vcwZNdbfwjt8FJTIRThiqZqUNFRNaTtugBO70PdmPCnCdbHfvWpX33sV5_7HaCHEaoB4AIoyVOhGPsH9it4tQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wu, Tianxiang</creator><creator>Tian, Wenya</creator><creator>Dou, Long</creator><creator>Jin, Zhong</creator><creator>Liu, Junfu</creator><creator>Liu, Yunpeng</creator><creator>Chen, Taotao</creator><creator>Xiao, Jinqing</creator><creator>Li, Junhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1522-8369</orcidid><orcidid>https://orcid.org/0000-0001-5196-9960</orcidid><orcidid>https://orcid.org/0000-0002-5626-000X</orcidid></search><sort><creationdate>20220501</creationdate><title>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</title><author>Wu, Tianxiang ; Tian, Wenya ; Dou, Long ; Jin, Zhong ; Liu, Junfu ; Liu, Yunpeng ; Chen, Taotao ; Xiao, Jinqing ; Li, Junhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-9af996546a1aef02003145b9c76a64ae4f392ed44da733a7d1b7c2b5bff262bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circular cylinders</topic><topic>Contact pressure</topic><topic>Contact resistance</topic><topic>Cuboid magnetorheological (MR) damper</topic><topic>Damping</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>electromechanical performance</topic><topic>Electronic packaging</topic><topic>flexible loading</topic><topic>Loading</topic><topic>microprobe test system</topic><topic>Packaging</topic><topic>Probes</topic><topic>Shock absorbers</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tianxiang</creatorcontrib><creatorcontrib>Tian, Wenya</creatorcontrib><creatorcontrib>Dou, Long</creatorcontrib><creatorcontrib>Jin, Zhong</creatorcontrib><creatorcontrib>Liu, Junfu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Chen, Taotao</creatorcontrib><creatorcontrib>Xiao, Jinqing</creatorcontrib><creatorcontrib>Li, Junhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Tianxiang</au><au>Tian, Wenya</au><au>Dou, Long</au><au>Jin, Zhong</au><au>Liu, Junfu</au><au>Liu, Yunpeng</au><au>Chen, Taotao</au><au>Xiao, Jinqing</au><au>Li, Junhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>723</spage><epage>730</epage><pages>723-730</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula>. Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2022.3167734</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1522-8369</orcidid><orcidid>https://orcid.org/0000-0001-5196-9960</orcidid><orcidid>https://orcid.org/0000-0002-5626-000X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-05, Vol.12 (5), p.723-730
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2022_3167734
source IEEE Electronic Library (IEL)
subjects Circular cylinders
Contact pressure
Contact resistance
Cuboid magnetorheological (MR) damper
Damping
Electric contacts
Electrical properties
electromechanical performance
Electronic packaging
flexible loading
Loading
microprobe test system
Packaging
Probes
Shock absorbers
Testing
title Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20Performance%20of%20Microprobe%20Test%20With%20Cuboid%20Magnetorheological%20Damper%20in%20Microelectronic%20Packaging&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Wu,%20Tianxiang&rft.date=2022-05-01&rft.volume=12&rft.issue=5&rft.spage=723&rft.epage=730&rft.pages=723-730&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2022.3167734&rft_dat=%3Cproquest_RIE%3E2669159289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669159289&rft_id=info:pmid/&rft_ieee_id=9758693&rfr_iscdi=true