Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging
To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar betwee...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-05, Vol.12 (5), p.723-730 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 730 |
---|---|
container_issue | 5 |
container_start_page | 723 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 12 |
creator | Wu, Tianxiang Tian, Wenya Dou, Long Jin, Zhong Liu, Junfu Liu, Yunpeng Chen, Taotao Xiao, Jinqing Li, Junhui |
description | To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 \Omega . Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 \mu \text{m} . The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process. |
doi_str_mv | 10.1109/TCPMT.2022.3167734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2022_3167734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9758693</ieee_id><sourcerecordid>2669159289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-9af996546a1aef02003145b9c76a64ae4f392ed44da733a7d1b7c2b5bff262bc3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEElXpH4CLJc4pfsR2fEShPKRW9BDE0XKcdZrSxMVJD_x70qbqXnYP882OJoruCZ4TgtVTnq1X-ZxiSueMCClZchVNKOEiZirl15eb49to1nVbPAxPscRsEnWLHdg--AbsxrS1NTu0huB8aExrAXmHVrUNfh98ASiHrkffdb9B2aHwdYlWpmqh92EDfuerE_1imj0EVLcjCKP94IzWxv6Yqm6ru-jGmV0Hs_OeRl-vizx7j5efbx_Z8zK2RJA-VsYpJXgiDDHgMMWYkYQXykphRGIgcUxRKJOkNJIxI0tSSEsLXjhHBS0sm0aPo--Q_vcwZNdbfwjt8FJTIRThiqZqUNFRNaTtugBO70PdmPCnCdbHfvWpX33sV5_7HaCHEaoB4AIoyVOhGPsH9it4tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669159289</pqid></control><display><type>article</type><title>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Tianxiang ; Tian, Wenya ; Dou, Long ; Jin, Zhong ; Liu, Junfu ; Liu, Yunpeng ; Chen, Taotao ; Xiao, Jinqing ; Li, Junhui</creator><creatorcontrib>Wu, Tianxiang ; Tian, Wenya ; Dou, Long ; Jin, Zhong ; Liu, Junfu ; Liu, Yunpeng ; Chen, Taotao ; Xiao, Jinqing ; Li, Junhui</creatorcontrib><description><![CDATA[To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula>. Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2022.3167734</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circular cylinders ; Contact pressure ; Contact resistance ; Cuboid magnetorheological (MR) damper ; Damping ; Electric contacts ; Electrical properties ; electromechanical performance ; Electronic packaging ; flexible loading ; Loading ; microprobe test system ; Packaging ; Probes ; Shock absorbers ; Testing</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-05, Vol.12 (5), p.723-730</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c161t-9af996546a1aef02003145b9c76a64ae4f392ed44da733a7d1b7c2b5bff262bc3</cites><orcidid>0000-0003-1522-8369 ; 0000-0001-5196-9960 ; 0000-0002-5626-000X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9758693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9758693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Tianxiang</creatorcontrib><creatorcontrib>Tian, Wenya</creatorcontrib><creatorcontrib>Dou, Long</creatorcontrib><creatorcontrib>Jin, Zhong</creatorcontrib><creatorcontrib>Liu, Junfu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Chen, Taotao</creatorcontrib><creatorcontrib>Xiao, Jinqing</creatorcontrib><creatorcontrib>Li, Junhui</creatorcontrib><title>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula>. Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process.]]></description><subject>Circular cylinders</subject><subject>Contact pressure</subject><subject>Contact resistance</subject><subject>Cuboid magnetorheological (MR) damper</subject><subject>Damping</subject><subject>Electric contacts</subject><subject>Electrical properties</subject><subject>electromechanical performance</subject><subject>Electronic packaging</subject><subject>flexible loading</subject><subject>Loading</subject><subject>microprobe test system</subject><subject>Packaging</subject><subject>Probes</subject><subject>Shock absorbers</subject><subject>Testing</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEElXpH4CLJc4pfsR2fEShPKRW9BDE0XKcdZrSxMVJD_x70qbqXnYP882OJoruCZ4TgtVTnq1X-ZxiSueMCClZchVNKOEiZirl15eb49to1nVbPAxPscRsEnWLHdg--AbsxrS1NTu0huB8aExrAXmHVrUNfh98ASiHrkffdb9B2aHwdYlWpmqh92EDfuerE_1imj0EVLcjCKP94IzWxv6Yqm6ru-jGmV0Hs_OeRl-vizx7j5efbx_Z8zK2RJA-VsYpJXgiDDHgMMWYkYQXykphRGIgcUxRKJOkNJIxI0tSSEsLXjhHBS0sm0aPo--Q_vcwZNdbfwjt8FJTIRThiqZqUNFRNaTtugBO70PdmPCnCdbHfvWpX33sV5_7HaCHEaoB4AIoyVOhGPsH9it4tQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wu, Tianxiang</creator><creator>Tian, Wenya</creator><creator>Dou, Long</creator><creator>Jin, Zhong</creator><creator>Liu, Junfu</creator><creator>Liu, Yunpeng</creator><creator>Chen, Taotao</creator><creator>Xiao, Jinqing</creator><creator>Li, Junhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1522-8369</orcidid><orcidid>https://orcid.org/0000-0001-5196-9960</orcidid><orcidid>https://orcid.org/0000-0002-5626-000X</orcidid></search><sort><creationdate>20220501</creationdate><title>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</title><author>Wu, Tianxiang ; Tian, Wenya ; Dou, Long ; Jin, Zhong ; Liu, Junfu ; Liu, Yunpeng ; Chen, Taotao ; Xiao, Jinqing ; Li, Junhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-9af996546a1aef02003145b9c76a64ae4f392ed44da733a7d1b7c2b5bff262bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circular cylinders</topic><topic>Contact pressure</topic><topic>Contact resistance</topic><topic>Cuboid magnetorheological (MR) damper</topic><topic>Damping</topic><topic>Electric contacts</topic><topic>Electrical properties</topic><topic>electromechanical performance</topic><topic>Electronic packaging</topic><topic>flexible loading</topic><topic>Loading</topic><topic>microprobe test system</topic><topic>Packaging</topic><topic>Probes</topic><topic>Shock absorbers</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Tianxiang</creatorcontrib><creatorcontrib>Tian, Wenya</creatorcontrib><creatorcontrib>Dou, Long</creatorcontrib><creatorcontrib>Jin, Zhong</creatorcontrib><creatorcontrib>Liu, Junfu</creatorcontrib><creatorcontrib>Liu, Yunpeng</creatorcontrib><creatorcontrib>Chen, Taotao</creatorcontrib><creatorcontrib>Xiao, Jinqing</creatorcontrib><creatorcontrib>Li, Junhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Tianxiang</au><au>Tian, Wenya</au><au>Dou, Long</au><au>Jin, Zhong</au><au>Liu, Junfu</au><au>Liu, Yunpeng</au><au>Chen, Taotao</au><au>Xiao, Jinqing</au><au>Li, Junhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>12</volume><issue>5</issue><spage>723</spage><epage>730</epage><pages>723-730</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[To avoid the damage of the microprobe to the wafer, the magnetorheological (MR) damping loading was used. The problem of low repeated positioning was solved by limiting the relative rotation between the probe and cylinder. The experimental results show that the damping performance was similar between the cuboid and cylinder damper. The repetition accuracy of cuboid was more than circular cylinder damper two times. Then, the electrical properties of probe with the cuboid damper were tested under different damping currents, loading velocities, and loading displacements, and the contact resistances fluctuated in the range of 0.85-1.4 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula>. Finally, the mathematical models of pressure and contact resistance were established using the loading speed of 20 mm/s and loading displacement of 300 <inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula>. The relationship between the pressure and contacting resistance of probe was revealed with the new damper during loading process and unloading process.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2022.3167734</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1522-8369</orcidid><orcidid>https://orcid.org/0000-0001-5196-9960</orcidid><orcidid>https://orcid.org/0000-0002-5626-000X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-05, Vol.12 (5), p.723-730 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2022_3167734 |
source | IEEE Electronic Library (IEL) |
subjects | Circular cylinders Contact pressure Contact resistance Cuboid magnetorheological (MR) damper Damping Electric contacts Electrical properties electromechanical performance Electronic packaging flexible loading Loading microprobe test system Packaging Probes Shock absorbers Testing |
title | Electromechanical Performance of Microprobe Test With Cuboid Magnetorheological Damper in Microelectronic Packaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A23%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electromechanical%20Performance%20of%20Microprobe%20Test%20With%20Cuboid%20Magnetorheological%20Damper%20in%20Microelectronic%20Packaging&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Wu,%20Tianxiang&rft.date=2022-05-01&rft.volume=12&rft.issue=5&rft.spage=723&rft.epage=730&rft.pages=723-730&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2022.3167734&rft_dat=%3Cproquest_RIE%3E2669159289%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669159289&rft_id=info:pmid/&rft_ieee_id=9758693&rfr_iscdi=true |