High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine

In this article, we propose a subminiature (10.9 mm \times56.6 mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.27-36
Hauptverfasser: Kohmu, Naohiro, Ishii, Maho, Ishigure, Takaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 27
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 12
creator Kohmu, Naohiro
Ishii, Maho
Ishigure, Takaaki
description In this article, we propose a subminiature (10.9 mm \times56.6 mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature ( T_{c} = 70\,\,^{\circ }\text{C} ) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally.
doi_str_mv 10.1109/TCPMT.2021.3124822
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2021_3124822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9598858</ieee_id><sourcerecordid>2621064194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EEhX0B2ATiXWK39jLEgJFKipSC2JnOWZSXKVJsZNF_570oTKbuYtzZ6SD0A3BI0Kwvl9k72-LEcWUjBihXFF6hgaUCJkyrcT5KQt8iYYxrnA_QuEHzAboa-KXP-kT1NG32ySvwLXBO1sltv5OZpt2n8cxwrqotknZhGTeFWtfe9t2AZLPbJ5P00cb4Z_O66Wv4RpdlLaKMDzuK_TxnC-ySTqdvbxm42nqmCRtypwFRlWhpSoLQSShyrpSgmC4KCkGxi0XlAvNOLegiCDaOmydcFJrxxW7QneHu5vQ_HYQW7NqulD3Lw2VlGDJieY9RQ-UC02MAUqzCX5tw9YQbHYSzV6i2Uk0R4l96fZQ8gBwKmihlRKK_QGnw2xE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064194</pqid></control><display><type>article</type><title>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</title><source>IEEE Electronic Library (IEL)</source><creator>Kohmu, Naohiro ; Ishii, Maho ; Ishigure, Takaaki</creator><creatorcontrib>Kohmu, Naohiro ; Ishii, Maho ; Ishigure, Takaaki</creatorcontrib><description><![CDATA[In this article, we propose a subminiature (10.9 mm <inline-formula> <tex-math notation="LaTeX">\times56.6 </tex-math></inline-formula> mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature (<inline-formula> <tex-math notation="LaTeX">T_{c} = 70\,\,^{\circ }\text{C} </tex-math></inline-formula>) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3124822</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Assembly ; Circuits ; Crosstalk ; Crosstalk penalty ; Density ; Electrodes ; Engines ; Footprints ; High temperature ; High-speed optical techniques ; Integrated optics ; Lasers ; Light sources ; narrow-gapped ground electrode ; onboard optical interconnect ; Optical communication ; Optical coupling ; Optical crosstalk ; Optical device fabrication ; optical engine ; Optical fibers ; Photometers ; polymer waveguide ; Vertical cavity surface emission lasers ; vertical cavity surface-emitting laser (VCSEL) ; Waveguides</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.27-36</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</citedby><cites>FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</cites><orcidid>0000-0001-8297-1369 ; 0000-0001-5155-1740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9598858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9598858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kohmu, Naohiro</creatorcontrib><creatorcontrib>Ishii, Maho</creatorcontrib><creatorcontrib>Ishigure, Takaaki</creatorcontrib><title>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[In this article, we propose a subminiature (10.9 mm <inline-formula> <tex-math notation="LaTeX">\times56.6 </tex-math></inline-formula> mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature (<inline-formula> <tex-math notation="LaTeX">T_{c} = 70\,\,^{\circ }\text{C} </tex-math></inline-formula>) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally.]]></description><subject>Assembly</subject><subject>Circuits</subject><subject>Crosstalk</subject><subject>Crosstalk penalty</subject><subject>Density</subject><subject>Electrodes</subject><subject>Engines</subject><subject>Footprints</subject><subject>High temperature</subject><subject>High-speed optical techniques</subject><subject>Integrated optics</subject><subject>Lasers</subject><subject>Light sources</subject><subject>narrow-gapped ground electrode</subject><subject>onboard optical interconnect</subject><subject>Optical communication</subject><subject>Optical coupling</subject><subject>Optical crosstalk</subject><subject>Optical device fabrication</subject><subject>optical engine</subject><subject>Optical fibers</subject><subject>Photometers</subject><subject>polymer waveguide</subject><subject>Vertical cavity surface emission lasers</subject><subject>vertical cavity surface-emitting laser (VCSEL)</subject><subject>Waveguides</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRS0EEhX0B2ATiXWK39jLEgJFKipSC2JnOWZSXKVJsZNF_570oTKbuYtzZ6SD0A3BI0Kwvl9k72-LEcWUjBihXFF6hgaUCJkyrcT5KQt8iYYxrnA_QuEHzAboa-KXP-kT1NG32ySvwLXBO1sltv5OZpt2n8cxwrqotknZhGTeFWtfe9t2AZLPbJ5P00cb4Z_O66Wv4RpdlLaKMDzuK_TxnC-ySTqdvbxm42nqmCRtypwFRlWhpSoLQSShyrpSgmC4KCkGxi0XlAvNOLegiCDaOmydcFJrxxW7QneHu5vQ_HYQW7NqulD3Lw2VlGDJieY9RQ-UC02MAUqzCX5tw9YQbHYSzV6i2Uk0R4l96fZQ8gBwKmihlRKK_QGnw2xE</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Kohmu, Naohiro</creator><creator>Ishii, Maho</creator><creator>Ishigure, Takaaki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8297-1369</orcidid><orcidid>https://orcid.org/0000-0001-5155-1740</orcidid></search><sort><creationdate>202201</creationdate><title>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</title><author>Kohmu, Naohiro ; Ishii, Maho ; Ishigure, Takaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Circuits</topic><topic>Crosstalk</topic><topic>Crosstalk penalty</topic><topic>Density</topic><topic>Electrodes</topic><topic>Engines</topic><topic>Footprints</topic><topic>High temperature</topic><topic>High-speed optical techniques</topic><topic>Integrated optics</topic><topic>Lasers</topic><topic>Light sources</topic><topic>narrow-gapped ground electrode</topic><topic>onboard optical interconnect</topic><topic>Optical communication</topic><topic>Optical coupling</topic><topic>Optical crosstalk</topic><topic>Optical device fabrication</topic><topic>optical engine</topic><topic>Optical fibers</topic><topic>Photometers</topic><topic>polymer waveguide</topic><topic>Vertical cavity surface emission lasers</topic><topic>vertical cavity surface-emitting laser (VCSEL)</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohmu, Naohiro</creatorcontrib><creatorcontrib>Ishii, Maho</creatorcontrib><creatorcontrib>Ishigure, Takaaki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kohmu, Naohiro</au><au>Ishii, Maho</au><au>Ishigure, Takaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>27</spage><epage>36</epage><pages>27-36</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[In this article, we propose a subminiature (10.9 mm <inline-formula> <tex-math notation="LaTeX">\times56.6 </tex-math></inline-formula> mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature (<inline-formula> <tex-math notation="LaTeX">T_{c} = 70\,\,^{\circ }\text{C} </tex-math></inline-formula>) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3124822</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8297-1369</orcidid><orcidid>https://orcid.org/0000-0001-5155-1740</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.27-36
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2021_3124822
source IEEE Electronic Library (IEL)
subjects Assembly
Circuits
Crosstalk
Crosstalk penalty
Density
Electrodes
Engines
Footprints
High temperature
High-speed optical techniques
Integrated optics
Lasers
Light sources
narrow-gapped ground electrode
onboard optical interconnect
Optical communication
Optical coupling
Optical crosstalk
Optical device fabrication
optical engine
Optical fibers
Photometers
polymer waveguide
Vertical cavity surface emission lasers
vertical cavity surface-emitting laser (VCSEL)
Waveguides
title High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Density%20Electrical%20and%20Optical%20Assembly%20for%20Subminiature%20VCSEL-Based%20Optical%20Engine&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Kohmu,%20Naohiro&rft.date=2022-01&rft.volume=12&rft.issue=1&rft.spage=27&rft.epage=36&rft.pages=27-36&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3124822&rft_dat=%3Cproquest_RIE%3E2621064194%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064194&rft_id=info:pmid/&rft_ieee_id=9598858&rfr_iscdi=true