High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine
In this article, we propose a subminiature (10.9 mm \times56.6 mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TI...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.27-36 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 12 |
creator | Kohmu, Naohiro Ishii, Maho Ishigure, Takaaki |
description | In this article, we propose a subminiature (10.9 mm \times56.6 mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature ( T_{c} = 70\,\,^{\circ }\text{C} ) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally. |
doi_str_mv | 10.1109/TCPMT.2021.3124822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2021_3124822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9598858</ieee_id><sourcerecordid>2621064194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EEhX0B2ATiXWK39jLEgJFKipSC2JnOWZSXKVJsZNF_570oTKbuYtzZ6SD0A3BI0Kwvl9k72-LEcWUjBihXFF6hgaUCJkyrcT5KQt8iYYxrnA_QuEHzAboa-KXP-kT1NG32ySvwLXBO1sltv5OZpt2n8cxwrqotknZhGTeFWtfe9t2AZLPbJ5P00cb4Z_O66Wv4RpdlLaKMDzuK_TxnC-ySTqdvbxm42nqmCRtypwFRlWhpSoLQSShyrpSgmC4KCkGxi0XlAvNOLegiCDaOmydcFJrxxW7QneHu5vQ_HYQW7NqulD3Lw2VlGDJieY9RQ-UC02MAUqzCX5tw9YQbHYSzV6i2Uk0R4l96fZQ8gBwKmihlRKK_QGnw2xE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064194</pqid></control><display><type>article</type><title>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</title><source>IEEE Electronic Library (IEL)</source><creator>Kohmu, Naohiro ; Ishii, Maho ; Ishigure, Takaaki</creator><creatorcontrib>Kohmu, Naohiro ; Ishii, Maho ; Ishigure, Takaaki</creatorcontrib><description><![CDATA[In this article, we propose a subminiature (10.9 mm <inline-formula> <tex-math notation="LaTeX">\times56.6 </tex-math></inline-formula> mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature (<inline-formula> <tex-math notation="LaTeX">T_{c} = 70\,\,^{\circ }\text{C} </tex-math></inline-formula>) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally.]]></description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3124822</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Assembly ; Circuits ; Crosstalk ; Crosstalk penalty ; Density ; Electrodes ; Engines ; Footprints ; High temperature ; High-speed optical techniques ; Integrated optics ; Lasers ; Light sources ; narrow-gapped ground electrode ; onboard optical interconnect ; Optical communication ; Optical coupling ; Optical crosstalk ; Optical device fabrication ; optical engine ; Optical fibers ; Photometers ; polymer waveguide ; Vertical cavity surface emission lasers ; vertical cavity surface-emitting laser (VCSEL) ; Waveguides</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.27-36</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</citedby><cites>FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</cites><orcidid>0000-0001-8297-1369 ; 0000-0001-5155-1740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9598858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9598858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kohmu, Naohiro</creatorcontrib><creatorcontrib>Ishii, Maho</creatorcontrib><creatorcontrib>Ishigure, Takaaki</creatorcontrib><title>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description><![CDATA[In this article, we propose a subminiature (10.9 mm <inline-formula> <tex-math notation="LaTeX">\times56.6 </tex-math></inline-formula> mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature (<inline-formula> <tex-math notation="LaTeX">T_{c} = 70\,\,^{\circ }\text{C} </tex-math></inline-formula>) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally.]]></description><subject>Assembly</subject><subject>Circuits</subject><subject>Crosstalk</subject><subject>Crosstalk penalty</subject><subject>Density</subject><subject>Electrodes</subject><subject>Engines</subject><subject>Footprints</subject><subject>High temperature</subject><subject>High-speed optical techniques</subject><subject>Integrated optics</subject><subject>Lasers</subject><subject>Light sources</subject><subject>narrow-gapped ground electrode</subject><subject>onboard optical interconnect</subject><subject>Optical communication</subject><subject>Optical coupling</subject><subject>Optical crosstalk</subject><subject>Optical device fabrication</subject><subject>optical engine</subject><subject>Optical fibers</subject><subject>Photometers</subject><subject>polymer waveguide</subject><subject>Vertical cavity surface emission lasers</subject><subject>vertical cavity surface-emitting laser (VCSEL)</subject><subject>Waveguides</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQRS0EEhX0B2ATiXWK39jLEgJFKipSC2JnOWZSXKVJsZNF_570oTKbuYtzZ6SD0A3BI0Kwvl9k72-LEcWUjBihXFF6hgaUCJkyrcT5KQt8iYYxrnA_QuEHzAboa-KXP-kT1NG32ySvwLXBO1sltv5OZpt2n8cxwrqotknZhGTeFWtfe9t2AZLPbJ5P00cb4Z_O66Wv4RpdlLaKMDzuK_TxnC-ySTqdvbxm42nqmCRtypwFRlWhpSoLQSShyrpSgmC4KCkGxi0XlAvNOLegiCDaOmydcFJrxxW7QneHu5vQ_HYQW7NqulD3Lw2VlGDJieY9RQ-UC02MAUqzCX5tw9YQbHYSzV6i2Uk0R4l96fZQ8gBwKmihlRKK_QGnw2xE</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Kohmu, Naohiro</creator><creator>Ishii, Maho</creator><creator>Ishigure, Takaaki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8297-1369</orcidid><orcidid>https://orcid.org/0000-0001-5155-1740</orcidid></search><sort><creationdate>202201</creationdate><title>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</title><author>Kohmu, Naohiro ; Ishii, Maho ; Ishigure, Takaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3cae328b968fb516128acf6e530bf20e34a452459344ae81519ac0ac5c699c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>Circuits</topic><topic>Crosstalk</topic><topic>Crosstalk penalty</topic><topic>Density</topic><topic>Electrodes</topic><topic>Engines</topic><topic>Footprints</topic><topic>High temperature</topic><topic>High-speed optical techniques</topic><topic>Integrated optics</topic><topic>Lasers</topic><topic>Light sources</topic><topic>narrow-gapped ground electrode</topic><topic>onboard optical interconnect</topic><topic>Optical communication</topic><topic>Optical coupling</topic><topic>Optical crosstalk</topic><topic>Optical device fabrication</topic><topic>optical engine</topic><topic>Optical fibers</topic><topic>Photometers</topic><topic>polymer waveguide</topic><topic>Vertical cavity surface emission lasers</topic><topic>vertical cavity surface-emitting laser (VCSEL)</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohmu, Naohiro</creatorcontrib><creatorcontrib>Ishii, Maho</creatorcontrib><creatorcontrib>Ishigure, Takaaki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kohmu, Naohiro</au><au>Ishii, Maho</au><au>Ishigure, Takaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2022-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>27</spage><epage>36</epage><pages>27-36</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract><![CDATA[In this article, we propose a subminiature (10.9 mm <inline-formula> <tex-math notation="LaTeX">\times56.6 </tex-math></inline-formula> mm) vertical cavity surface-emitting laser (VCSEL)-based optical engine with a low crosstalk penalty for onboard applications. When applying optical engines to onboard interconnects, ICs [laser drivers and transimpedance amplifiers (TIAs)] and active optical devices (light sources and photodetectors) must be mounted densely to make the footprint as small as possible. It is a concern that such a high-density integration could increase the crosstalk between transmitter (Tx) and receiver (Rx) devices, which could be caused by the supply current difference between the circuit from laser drivers to light source and the circuit from photodetectors to TIAs. In this article, by inserting a gap in the ground electrode, a compact optical engine (less than half of the footprint of quad small form-factor pluggable-double density (QSFP-DD) compliant engines) enabling a 25.78-Gb/s error-free optical transmission is successfully fabricated. We optimize the gap width to decrease the crosstalk while maintaining efficient heat dissipation via the electrode. We compare the characteristics of the fabricated optical engine to the engine with the gap-less ground electrode structure formed in the same compact size. Then, we both theoretically and experimentally confirm a link power budget savings of about 1.8 dB, which is sustained even under high-temperature (<inline-formula> <tex-math notation="LaTeX">T_{c} = 70\,\,^{\circ }\text{C} </tex-math></inline-formula>) operation. In addition, to realize further high-density assembly, we also represent a lens-less optical coupling by inserting a 90 o -bent graded-index (GI) core polymer waveguide between the optical transmitter and multimode fiber. The transmission performance of the 90 o -bent GI-core waveguide is preliminarily evaluated, and we successfully transmit 53.125-Gb/s PAM4 optical signals experimentally.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3124822</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8297-1369</orcidid><orcidid>https://orcid.org/0000-0001-5155-1740</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2022-01, Vol.12 (1), p.27-36 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2021_3124822 |
source | IEEE Electronic Library (IEL) |
subjects | Assembly Circuits Crosstalk Crosstalk penalty Density Electrodes Engines Footprints High temperature High-speed optical techniques Integrated optics Lasers Light sources narrow-gapped ground electrode onboard optical interconnect Optical communication Optical coupling Optical crosstalk Optical device fabrication optical engine Optical fibers Photometers polymer waveguide Vertical cavity surface emission lasers vertical cavity surface-emitting laser (VCSEL) Waveguides |
title | High-Density Electrical and Optical Assembly for Subminiature VCSEL-Based Optical Engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Density%20Electrical%20and%20Optical%20Assembly%20for%20Subminiature%20VCSEL-Based%20Optical%20Engine&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Kohmu,%20Naohiro&rft.date=2022-01&rft.volume=12&rft.issue=1&rft.spage=27&rft.epage=36&rft.pages=27-36&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3124822&rft_dat=%3Cproquest_RIE%3E2621064194%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064194&rft_id=info:pmid/&rft_ieee_id=9598858&rfr_iscdi=true |