Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds
Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely cate...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2021-06, Vol.11 (6), p.974-982 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 982 |
---|---|
container_issue | 6 |
container_start_page | 974 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 11 |
creator | Rajan, Sreejith Kochupurackal Kaul, Ankit Sarvey, Thomas E. May, Gary S. Bakir, Muhannad S. |
description | Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications. |
doi_str_mv | 10.1109/TCPMT.2021.3082013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2021_3082013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9435419</ieee_id><sourcerecordid>2541467970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gN4EvG7NR9M2l6O6TVixFxUvQ9omM6M2M2kR_72ZGzs35_M5h_MCcI9RjDHiT3VRlXVMEMExRTlBmF6BGcEsjSjP2fUlZugWLLzfo2AsRxmiM9CVdrC9GT9NC0vTOqv7yXQhKWwoDztoNZRwo0bl7E4Nyk4ekphFz3BVrZfwI5Bwa3-iKpCmV5CGTuXMMKoOlnIw2vadvwM3WvZeLc5-Dt5XL3WxibZv69diuY1awtkYUa1RQrpGIZ7JjjJCWdpkjKiWZanmXLapZpI1aYKSluSdxJhIhbKWUNloSegcPJ72Hpz9npQfxd5ObggnBWEJTtKMh6fngJymwrfeO6XFwZkv6X4FRuIoqPgXVBwFFWdBA_RwgoxS6gLwhIa9nP4BzvVv-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541467970</pqid></control><display><type>article</type><title>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</title><source>IEEE Electronic Library (IEL)</source><creator>Rajan, Sreejith Kochupurackal ; Kaul, Ankit ; Sarvey, Thomas E. ; May, Gary S. ; Bakir, Muhannad S.</creator><creatorcontrib>Rajan, Sreejith Kochupurackal ; Kaul, Ankit ; Sarvey, Thomas E. ; May, Gary S. ; Bakir, Muhannad S.</creatorcontrib><description>Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3082013</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>2.5-D cooling ; 3-D printed manifold ; Coolants ; Cooling ; Couplings ; Crosstalk ; Design factors ; Field programmable gate arrays ; Form factors ; Heat sinks ; Manifolds ; Microfluidics ; micropin-fin heatsink ; Thermal coupling ; Thermal resistance ; Three dimensional printing ; Transceivers</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-06, Vol.11 (6), p.974-982</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</citedby><cites>FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</cites><orcidid>0000-0001-9986-8755 ; 0000-0003-4115-7138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9435419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9435419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajan, Sreejith Kochupurackal</creatorcontrib><creatorcontrib>Kaul, Ankit</creatorcontrib><creatorcontrib>Sarvey, Thomas E.</creatorcontrib><creatorcontrib>May, Gary S.</creatorcontrib><creatorcontrib>Bakir, Muhannad S.</creatorcontrib><title>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications.</description><subject>2.5-D cooling</subject><subject>3-D printed manifold</subject><subject>Coolants</subject><subject>Cooling</subject><subject>Couplings</subject><subject>Crosstalk</subject><subject>Design factors</subject><subject>Field programmable gate arrays</subject><subject>Form factors</subject><subject>Heat sinks</subject><subject>Manifolds</subject><subject>Microfluidics</subject><subject>micropin-fin heatsink</subject><subject>Thermal coupling</subject><subject>Thermal resistance</subject><subject>Three dimensional printing</subject><subject>Transceivers</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOOb-gN4EvG7NR9M2l6O6TVixFxUvQ9omM6M2M2kR_72ZGzs35_M5h_MCcI9RjDHiT3VRlXVMEMExRTlBmF6BGcEsjSjP2fUlZugWLLzfo2AsRxmiM9CVdrC9GT9NC0vTOqv7yXQhKWwoDztoNZRwo0bl7E4Nyk4ekphFz3BVrZfwI5Bwa3-iKpCmV5CGTuXMMKoOlnIw2vadvwM3WvZeLc5-Dt5XL3WxibZv69diuY1awtkYUa1RQrpGIZ7JjjJCWdpkjKiWZanmXLapZpI1aYKSluSdxJhIhbKWUNloSegcPJ72Hpz9npQfxd5ObggnBWEJTtKMh6fngJymwrfeO6XFwZkv6X4FRuIoqPgXVBwFFWdBA_RwgoxS6gLwhIa9nP4BzvVv-w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Rajan, Sreejith Kochupurackal</creator><creator>Kaul, Ankit</creator><creator>Sarvey, Thomas E.</creator><creator>May, Gary S.</creator><creator>Bakir, Muhannad S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9986-8755</orcidid><orcidid>https://orcid.org/0000-0003-4115-7138</orcidid></search><sort><creationdate>20210601</creationdate><title>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</title><author>Rajan, Sreejith Kochupurackal ; Kaul, Ankit ; Sarvey, Thomas E. ; May, Gary S. ; Bakir, Muhannad S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2.5-D cooling</topic><topic>3-D printed manifold</topic><topic>Coolants</topic><topic>Cooling</topic><topic>Couplings</topic><topic>Crosstalk</topic><topic>Design factors</topic><topic>Field programmable gate arrays</topic><topic>Form factors</topic><topic>Heat sinks</topic><topic>Manifolds</topic><topic>Microfluidics</topic><topic>micropin-fin heatsink</topic><topic>Thermal coupling</topic><topic>Thermal resistance</topic><topic>Three dimensional printing</topic><topic>Transceivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajan, Sreejith Kochupurackal</creatorcontrib><creatorcontrib>Kaul, Ankit</creatorcontrib><creatorcontrib>Sarvey, Thomas E.</creatorcontrib><creatorcontrib>May, Gary S.</creatorcontrib><creatorcontrib>Bakir, Muhannad S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajan, Sreejith Kochupurackal</au><au>Kaul, Ankit</au><au>Sarvey, Thomas E.</au><au>May, Gary S.</au><au>Bakir, Muhannad S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>974</spage><epage>982</epage><pages>974-982</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3082013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9986-8755</orcidid><orcidid>https://orcid.org/0000-0003-4115-7138</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-06, Vol.11 (6), p.974-982 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2021_3082013 |
source | IEEE Electronic Library (IEL) |
subjects | 2.5-D cooling 3-D printed manifold Coolants Cooling Couplings Crosstalk Design factors Field programmable gate arrays Form factors Heat sinks Manifolds Microfluidics micropin-fin heatsink Thermal coupling Thermal resistance Three dimensional printing Transceivers |
title | Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20Microfluidic%20Cooling%20of%20a%20Heterogeneous%202.5-D%20FPGA%20With%20Low-Profile%203-D%20Printed%20Manifolds&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Rajan,%20Sreejith%20Kochupurackal&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=974&rft.epage=982&rft.pages=974-982&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3082013&rft_dat=%3Cproquest_RIE%3E2541467970%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541467970&rft_id=info:pmid/&rft_ieee_id=9435419&rfr_iscdi=true |