Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds

Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely cate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2021-06, Vol.11 (6), p.974-982
Hauptverfasser: Rajan, Sreejith Kochupurackal, Kaul, Ankit, Sarvey, Thomas E., May, Gary S., Bakir, Muhannad S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 982
container_issue 6
container_start_page 974
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 11
creator Rajan, Sreejith Kochupurackal
Kaul, Ankit
Sarvey, Thomas E.
May, Gary S.
Bakir, Muhannad S.
description Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications.
doi_str_mv 10.1109/TCPMT.2021.3082013
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2021_3082013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9435419</ieee_id><sourcerecordid>2541467970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gN4EvG7NR9M2l6O6TVixFxUvQ9omM6M2M2kR_72ZGzs35_M5h_MCcI9RjDHiT3VRlXVMEMExRTlBmF6BGcEsjSjP2fUlZugWLLzfo2AsRxmiM9CVdrC9GT9NC0vTOqv7yXQhKWwoDztoNZRwo0bl7E4Nyk4ekphFz3BVrZfwI5Bwa3-iKpCmV5CGTuXMMKoOlnIw2vadvwM3WvZeLc5-Dt5XL3WxibZv69diuY1awtkYUa1RQrpGIZ7JjjJCWdpkjKiWZanmXLapZpI1aYKSluSdxJhIhbKWUNloSegcPJ72Hpz9npQfxd5ObggnBWEJTtKMh6fngJymwrfeO6XFwZkv6X4FRuIoqPgXVBwFFWdBA_RwgoxS6gLwhIa9nP4BzvVv-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541467970</pqid></control><display><type>article</type><title>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</title><source>IEEE Electronic Library (IEL)</source><creator>Rajan, Sreejith Kochupurackal ; Kaul, Ankit ; Sarvey, Thomas E. ; May, Gary S. ; Bakir, Muhannad S.</creator><creatorcontrib>Rajan, Sreejith Kochupurackal ; Kaul, Ankit ; Sarvey, Thomas E. ; May, Gary S. ; Bakir, Muhannad S.</creatorcontrib><description>Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2021.3082013</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>2.5-D cooling ; 3-D printed manifold ; Coolants ; Cooling ; Couplings ; Crosstalk ; Design factors ; Field programmable gate arrays ; Form factors ; Heat sinks ; Manifolds ; Microfluidics ; micropin-fin heatsink ; Thermal coupling ; Thermal resistance ; Three dimensional printing ; Transceivers</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-06, Vol.11 (6), p.974-982</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</citedby><cites>FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</cites><orcidid>0000-0001-9986-8755 ; 0000-0003-4115-7138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9435419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9435419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajan, Sreejith Kochupurackal</creatorcontrib><creatorcontrib>Kaul, Ankit</creatorcontrib><creatorcontrib>Sarvey, Thomas E.</creatorcontrib><creatorcontrib>May, Gary S.</creatorcontrib><creatorcontrib>Bakir, Muhannad S.</creatorcontrib><title>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications.</description><subject>2.5-D cooling</subject><subject>3-D printed manifold</subject><subject>Coolants</subject><subject>Cooling</subject><subject>Couplings</subject><subject>Crosstalk</subject><subject>Design factors</subject><subject>Field programmable gate arrays</subject><subject>Form factors</subject><subject>Heat sinks</subject><subject>Manifolds</subject><subject>Microfluidics</subject><subject>micropin-fin heatsink</subject><subject>Thermal coupling</subject><subject>Thermal resistance</subject><subject>Three dimensional printing</subject><subject>Transceivers</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOOb-gN4EvG7NR9M2l6O6TVixFxUvQ9omM6M2M2kR_72ZGzs35_M5h_MCcI9RjDHiT3VRlXVMEMExRTlBmF6BGcEsjSjP2fUlZugWLLzfo2AsRxmiM9CVdrC9GT9NC0vTOqv7yXQhKWwoDztoNZRwo0bl7E4Nyk4ekphFz3BVrZfwI5Bwa3-iKpCmV5CGTuXMMKoOlnIw2vadvwM3WvZeLc5-Dt5XL3WxibZv69diuY1awtkYUa1RQrpGIZ7JjjJCWdpkjKiWZanmXLapZpI1aYKSluSdxJhIhbKWUNloSegcPJ72Hpz9npQfxd5ObggnBWEJTtKMh6fngJymwrfeO6XFwZkv6X4FRuIoqPgXVBwFFWdBA_RwgoxS6gLwhIa9nP4BzvVv-w</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Rajan, Sreejith Kochupurackal</creator><creator>Kaul, Ankit</creator><creator>Sarvey, Thomas E.</creator><creator>May, Gary S.</creator><creator>Bakir, Muhannad S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9986-8755</orcidid><orcidid>https://orcid.org/0000-0003-4115-7138</orcidid></search><sort><creationdate>20210601</creationdate><title>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</title><author>Rajan, Sreejith Kochupurackal ; Kaul, Ankit ; Sarvey, Thomas E. ; May, Gary S. ; Bakir, Muhannad S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3ff042dbe097ad352356b752ec576f99ac6f5a5b6404c28da112ae07c23abfa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2.5-D cooling</topic><topic>3-D printed manifold</topic><topic>Coolants</topic><topic>Cooling</topic><topic>Couplings</topic><topic>Crosstalk</topic><topic>Design factors</topic><topic>Field programmable gate arrays</topic><topic>Form factors</topic><topic>Heat sinks</topic><topic>Manifolds</topic><topic>Microfluidics</topic><topic>micropin-fin heatsink</topic><topic>Thermal coupling</topic><topic>Thermal resistance</topic><topic>Three dimensional printing</topic><topic>Transceivers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajan, Sreejith Kochupurackal</creatorcontrib><creatorcontrib>Kaul, Ankit</creatorcontrib><creatorcontrib>Sarvey, Thomas E.</creatorcontrib><creatorcontrib>May, Gary S.</creatorcontrib><creatorcontrib>Bakir, Muhannad S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajan, Sreejith Kochupurackal</au><au>Kaul, Ankit</au><au>Sarvey, Thomas E.</au><au>May, Gary S.</au><au>Bakir, Muhannad S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>974</spage><epage>982</epage><pages>974-982</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Heterogeneous integration techniques such as 2.5-D system-in-packages (SiPs) present new challenges that include higher aggregate package power as well as increased thermal crosstalk between different chiplets due to their proximity. This creates the need for advanced cooling solutions uniquely catered to these issues. This work presents the first demonstration of monolithic microfluidic cooling of active 2.5-D ICs to mitigate high-power and thermal crosstalk between chiplets. A 2.5-D FPGA package is used for demonstration purposes. Micropin-fin heat sinks etched directly into the backside of five chiplets in the package are supplied with de-ionized water as coolant through 3-D printed manifolds. This approach helps create a low-form factor cooling solution. Design considerations for the polymer manifold as well as micropin-fin etching are discussed. FPGA core temperature was maintained at approximately 30 °C when dissipating nearly 107 W of power, corresponding to a thermal resistance of 0.074 °C/W, and thermal coupling values as low as 0.010 °C/W. We also demonstrate excellent thermal performance even with elevated inlet temperatures for energy-efficient cooling applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2021.3082013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9986-8755</orcidid><orcidid>https://orcid.org/0000-0003-4115-7138</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2021-06, Vol.11 (6), p.974-982
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2021_3082013
source IEEE Electronic Library (IEL)
subjects 2.5-D cooling
3-D printed manifold
Coolants
Cooling
Couplings
Crosstalk
Design factors
Field programmable gate arrays
Form factors
Heat sinks
Manifolds
Microfluidics
micropin-fin heatsink
Thermal coupling
Thermal resistance
Three dimensional printing
Transceivers
title Monolithic Microfluidic Cooling of a Heterogeneous 2.5-D FPGA With Low-Profile 3-D Printed Manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20Microfluidic%20Cooling%20of%20a%20Heterogeneous%202.5-D%20FPGA%20With%20Low-Profile%203-D%20Printed%20Manifolds&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Rajan,%20Sreejith%20Kochupurackal&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=974&rft.epage=982&rft.pages=974-982&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2021.3082013&rft_dat=%3Cproquest_RIE%3E2541467970%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541467970&rft_id=info:pmid/&rft_ieee_id=9435419&rfr_iscdi=true