Data Science for Delamination Prognosis and Online Batch Learning in Semiconductor Assembly Process

The transformation of wafers into chips is a complex manufacturing process involving literally thousands of equipment parameters. Delamination, a leading cause of defective products, can occur between die and epoxy molding compound (EMC), epoxy and substrate, lead frame and EMC, and so on. Troublesh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2020-02, Vol.10 (2), p.314-324
Hauptverfasser: Hung, Shao-Yen, Lee, Chia-Yen, Lin, Yung-Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 2
container_start_page 314
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 10
creator Hung, Shao-Yen
Lee, Chia-Yen
Lin, Yung-Lun
description The transformation of wafers into chips is a complex manufacturing process involving literally thousands of equipment parameters. Delamination, a leading cause of defective products, can occur between die and epoxy molding compound (EMC), epoxy and substrate, lead frame and EMC, and so on. Troubleshooting is generally on a case-by-case basis and is both timeconsuming and labor-intensive. We propose a three-phase data science (DS) framework for process prognosis and prediction. The first phase is for data preprocessing. The second phase uses least absolute shrinkage and selection operator (LASSO) regression and stepwise regression to identify the key variables affecting delamination. The third phase develops a backpropagation neural network (BPNN), support vector regression (SVR), partial least squares (PLS), and gradient boosting machine (GBM) to predict the ratio of the delamination area in a die. We also investigate the imbalance between a false positive rate and a false negative rate after quality classification with BPN and GBM models to improve the tradeoff between the two types of risks. We conducted an empirical study of a semiconductor manufacturer, and the results show that the proposed framework provides an effective delamination prediction supporting the troubleshooting. In addition, for online prediction, it is necessary to determine the batch size for the timing of retraining the model, and we suggest the cost-oriented method to solve the issue.
doi_str_mv 10.1109/TCPMT.2019.2956485
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2019_2956485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8917675</ieee_id><sourcerecordid>2352193846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d572727b227a6fc622af1e703466f2229d5d248a7f90f86462029a9d8b99e0863</originalsourceid><addsrcrecordid>eNo9kE9PAjEQxRujiUT5Anpp4hlsZ7fd9ojgvwQDCXhuSreLJbsttsuBb--uEGYOM4f3Zl5-CD1QMqaUyOf1dPm1HgOhcgyS8VywKzQAyvgok4JdX3ZGbtEwpR3piglSkGyAzEy3Gq-Ms95YXIWIZ7bWjfO6dcHjZQxbH5JLWPsSL3ztvMUvujU_eG519M5vsfN4ZRtngi8Ppu0uTFKyzaY-9m5jU7pHN5Wukx2e5x36fntdTz9G88X753QyH5kudjsqWQFdbwAKzSvDAXRFbZcy57wCAFmyEnKhi0qSSvCcAwGpZSk2UloieHaHnk539zH8Hmxq1S4cou9eKsgYUJmJvFfBSWViSCnaSu2ja3Q8KkpUz1P981Q9T3Xm2ZkeTyZnrb0YhKQFL1j2B7hTcKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352193846</pqid></control><display><type>article</type><title>Data Science for Delamination Prognosis and Online Batch Learning in Semiconductor Assembly Process</title><source>IEEE Electronic Library (IEL)</source><creator>Hung, Shao-Yen ; Lee, Chia-Yen ; Lin, Yung-Lun</creator><creatorcontrib>Hung, Shao-Yen ; Lee, Chia-Yen ; Lin, Yung-Lun</creatorcontrib><description>The transformation of wafers into chips is a complex manufacturing process involving literally thousands of equipment parameters. Delamination, a leading cause of defective products, can occur between die and epoxy molding compound (EMC), epoxy and substrate, lead frame and EMC, and so on. Troubleshooting is generally on a case-by-case basis and is both timeconsuming and labor-intensive. We propose a three-phase data science (DS) framework for process prognosis and prediction. The first phase is for data preprocessing. The second phase uses least absolute shrinkage and selection operator (LASSO) regression and stepwise regression to identify the key variables affecting delamination. The third phase develops a backpropagation neural network (BPNN), support vector regression (SVR), partial least squares (PLS), and gradient boosting machine (GBM) to predict the ratio of the delamination area in a die. We also investigate the imbalance between a false positive rate and a false negative rate after quality classification with BPN and GBM models to improve the tradeoff between the two types of risks. We conducted an empirical study of a semiconductor manufacturer, and the results show that the proposed framework provides an effective delamination prediction supporting the troubleshooting. In addition, for online prediction, it is necessary to determine the batch size for the timing of retraining the model, and we suggest the cost-oriented method to solve the issue.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2019.2956485</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Back propagation ; Batch size ; class imbalance problem ; Control charts ; Data mining ; Data science ; Defective products ; Delamination ; delamination prognosis ; Electromagnetic compatibility ; Manufacturing ; Molding (process) ; Molding compounds ; Neural networks ; Prognosis ; Regression ; Retraining ; semiconductor assembly process ; Substrates ; Support vector machines ; Trouble shooting ; Troubleshooting ; variable selection</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-02, Vol.10 (2), p.314-324</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d572727b227a6fc622af1e703466f2229d5d248a7f90f86462029a9d8b99e0863</citedby><cites>FETCH-LOGICAL-c295t-d572727b227a6fc622af1e703466f2229d5d248a7f90f86462029a9d8b99e0863</cites><orcidid>0000-0002-5062-0246 ; 0000-0002-2928-3337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8917675$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8917675$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hung, Shao-Yen</creatorcontrib><creatorcontrib>Lee, Chia-Yen</creatorcontrib><creatorcontrib>Lin, Yung-Lun</creatorcontrib><title>Data Science for Delamination Prognosis and Online Batch Learning in Semiconductor Assembly Process</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>The transformation of wafers into chips is a complex manufacturing process involving literally thousands of equipment parameters. Delamination, a leading cause of defective products, can occur between die and epoxy molding compound (EMC), epoxy and substrate, lead frame and EMC, and so on. Troubleshooting is generally on a case-by-case basis and is both timeconsuming and labor-intensive. We propose a three-phase data science (DS) framework for process prognosis and prediction. The first phase is for data preprocessing. The second phase uses least absolute shrinkage and selection operator (LASSO) regression and stepwise regression to identify the key variables affecting delamination. The third phase develops a backpropagation neural network (BPNN), support vector regression (SVR), partial least squares (PLS), and gradient boosting machine (GBM) to predict the ratio of the delamination area in a die. We also investigate the imbalance between a false positive rate and a false negative rate after quality classification with BPN and GBM models to improve the tradeoff between the two types of risks. We conducted an empirical study of a semiconductor manufacturer, and the results show that the proposed framework provides an effective delamination prediction supporting the troubleshooting. In addition, for online prediction, it is necessary to determine the batch size for the timing of retraining the model, and we suggest the cost-oriented method to solve the issue.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Batch size</subject><subject>class imbalance problem</subject><subject>Control charts</subject><subject>Data mining</subject><subject>Data science</subject><subject>Defective products</subject><subject>Delamination</subject><subject>delamination prognosis</subject><subject>Electromagnetic compatibility</subject><subject>Manufacturing</subject><subject>Molding (process)</subject><subject>Molding compounds</subject><subject>Neural networks</subject><subject>Prognosis</subject><subject>Regression</subject><subject>Retraining</subject><subject>semiconductor assembly process</subject><subject>Substrates</subject><subject>Support vector machines</subject><subject>Trouble shooting</subject><subject>Troubleshooting</subject><subject>variable selection</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PAjEQxRujiUT5Anpp4hlsZ7fd9ojgvwQDCXhuSreLJbsttsuBb--uEGYOM4f3Zl5-CD1QMqaUyOf1dPm1HgOhcgyS8VywKzQAyvgok4JdX3ZGbtEwpR3piglSkGyAzEy3Gq-Ms95YXIWIZ7bWjfO6dcHjZQxbH5JLWPsSL3ztvMUvujU_eG519M5vsfN4ZRtngi8Ppu0uTFKyzaY-9m5jU7pHN5Wukx2e5x36fntdTz9G88X753QyH5kudjsqWQFdbwAKzSvDAXRFbZcy57wCAFmyEnKhi0qSSvCcAwGpZSk2UloieHaHnk539zH8Hmxq1S4cou9eKsgYUJmJvFfBSWViSCnaSu2ja3Q8KkpUz1P981Q9T3Xm2ZkeTyZnrb0YhKQFL1j2B7hTcKY</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Hung, Shao-Yen</creator><creator>Lee, Chia-Yen</creator><creator>Lin, Yung-Lun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5062-0246</orcidid><orcidid>https://orcid.org/0000-0002-2928-3337</orcidid></search><sort><creationdate>20200201</creationdate><title>Data Science for Delamination Prognosis and Online Batch Learning in Semiconductor Assembly Process</title><author>Hung, Shao-Yen ; Lee, Chia-Yen ; Lin, Yung-Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d572727b227a6fc622af1e703466f2229d5d248a7f90f86462029a9d8b99e0863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Batch size</topic><topic>class imbalance problem</topic><topic>Control charts</topic><topic>Data mining</topic><topic>Data science</topic><topic>Defective products</topic><topic>Delamination</topic><topic>delamination prognosis</topic><topic>Electromagnetic compatibility</topic><topic>Manufacturing</topic><topic>Molding (process)</topic><topic>Molding compounds</topic><topic>Neural networks</topic><topic>Prognosis</topic><topic>Regression</topic><topic>Retraining</topic><topic>semiconductor assembly process</topic><topic>Substrates</topic><topic>Support vector machines</topic><topic>Trouble shooting</topic><topic>Troubleshooting</topic><topic>variable selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Shao-Yen</creatorcontrib><creatorcontrib>Lee, Chia-Yen</creatorcontrib><creatorcontrib>Lin, Yung-Lun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hung, Shao-Yen</au><au>Lee, Chia-Yen</au><au>Lin, Yung-Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Science for Delamination Prognosis and Online Batch Learning in Semiconductor Assembly Process</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>314</spage><epage>324</epage><pages>314-324</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>The transformation of wafers into chips is a complex manufacturing process involving literally thousands of equipment parameters. Delamination, a leading cause of defective products, can occur between die and epoxy molding compound (EMC), epoxy and substrate, lead frame and EMC, and so on. Troubleshooting is generally on a case-by-case basis and is both timeconsuming and labor-intensive. We propose a three-phase data science (DS) framework for process prognosis and prediction. The first phase is for data preprocessing. The second phase uses least absolute shrinkage and selection operator (LASSO) regression and stepwise regression to identify the key variables affecting delamination. The third phase develops a backpropagation neural network (BPNN), support vector regression (SVR), partial least squares (PLS), and gradient boosting machine (GBM) to predict the ratio of the delamination area in a die. We also investigate the imbalance between a false positive rate and a false negative rate after quality classification with BPN and GBM models to improve the tradeoff between the two types of risks. We conducted an empirical study of a semiconductor manufacturer, and the results show that the proposed framework provides an effective delamination prediction supporting the troubleshooting. In addition, for online prediction, it is necessary to determine the batch size for the timing of retraining the model, and we suggest the cost-oriented method to solve the issue.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2019.2956485</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5062-0246</orcidid><orcidid>https://orcid.org/0000-0002-2928-3337</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2020-02, Vol.10 (2), p.314-324
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2019_2956485
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Back propagation
Batch size
class imbalance problem
Control charts
Data mining
Data science
Defective products
Delamination
delamination prognosis
Electromagnetic compatibility
Manufacturing
Molding (process)
Molding compounds
Neural networks
Prognosis
Regression
Retraining
semiconductor assembly process
Substrates
Support vector machines
Trouble shooting
Troubleshooting
variable selection
title Data Science for Delamination Prognosis and Online Batch Learning in Semiconductor Assembly Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Science%20for%20Delamination%20Prognosis%20and%20Online%20Batch%20Learning%20in%20Semiconductor%20Assembly%20Process&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Hung,%20Shao-Yen&rft.date=2020-02-01&rft.volume=10&rft.issue=2&rft.spage=314&rft.epage=324&rft.pages=314-324&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2019.2956485&rft_dat=%3Cproquest_RIE%3E2352193846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352193846&rft_id=info:pmid/&rft_ieee_id=8917675&rfr_iscdi=true