Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding
In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2018-02, Vol.8 (2), p.169-176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 2 |
container_start_page | 169 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 8 |
creator | Rautiainen, Antti Vuorinen, Vesa Heikkinen, Hannele Paulasto-Krockel, Mervi |
description | In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly. |
doi_str_mv | 10.1109/TCPMT.2017.2780102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2017_2780102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8248642</ieee_id><sourcerecordid>1994460545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGr_gF4WPG87-dokx1r8KKxYaMVjyG4SSam7bbIr-O_dWulcZg7vMzM8CN1imGIMarZZrF43UwJYTImQgIFcoBHBvMipkvzyPHO4RpOUtjAUlyCAjpD4MN7FvHTfbpfN-3UzW3XZut0Fm5fh0AebLZvORRu871Nom-yhbWxoPm_QlTe75Cb_fYzenx43i5e8fHteLuZlXlOqulwSJTwHJiz2UhRVDTVgLCh1lhpqmBdVZWpcKG5FJRkRlmFlqqqwfHiRKzpG96e9-9geepc6vW372AwnNVaKsQI440OKnFJ1bFOKzut9DF8m_mgM-uhI_znSR0f639EA3Z2g4Jw7A5IwWTBCfwEmcmB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994460545</pqid></control><display><type>article</type><title>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</title><source>IEEE Electronic Library (IEL)</source><creator>Rautiainen, Antti ; Vuorinen, Vesa ; Heikkinen, Hannele ; Paulasto-Krockel, Mervi</creator><creatorcontrib>Rautiainen, Antti ; Vuorinen, Vesa ; Heikkinen, Hannele ; Paulasto-Krockel, Mervi</creatorcontrib><description>In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2017.2780102</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adhesive bonding ; Au–Sn–Pt system ; Bond strength ; Bonding ; Bonding strength ; Buffer layers ; CMOS ; Encapsulation ; Gold ; Interdiffusion ; intermetallic compounds (IMCs) ; Level (quantity) ; Metallization ; Metallizing ; Microelectromechanical systems ; Micromechanical devices ; Molybdenum ; Platinum ; remelting temperature ; Shear strength ; Shock tests ; solid–liquid interdiffusion (SLID) bonding ; Systems analysis ; Tensile strength ; Tensile tests ; Thermal shock ; Thickness ; Tin</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2018-02, Vol.8 (2), p.169-176</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</citedby><cites>FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</cites><orcidid>0000-0003-3749-4641 ; 0000-0003-0347-5012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8248642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8248642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rautiainen, Antti</creatorcontrib><creatorcontrib>Vuorinen, Vesa</creatorcontrib><creatorcontrib>Heikkinen, Hannele</creatorcontrib><creatorcontrib>Paulasto-Krockel, Mervi</creatorcontrib><title>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly.</description><subject>Adhesive bonding</subject><subject>Au–Sn–Pt system</subject><subject>Bond strength</subject><subject>Bonding</subject><subject>Bonding strength</subject><subject>Buffer layers</subject><subject>CMOS</subject><subject>Encapsulation</subject><subject>Gold</subject><subject>Interdiffusion</subject><subject>intermetallic compounds (IMCs)</subject><subject>Level (quantity)</subject><subject>Metallization</subject><subject>Metallizing</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Molybdenum</subject><subject>Platinum</subject><subject>remelting temperature</subject><subject>Shear strength</subject><subject>Shock tests</subject><subject>solid–liquid interdiffusion (SLID) bonding</subject><subject>Systems analysis</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal shock</subject><subject>Thickness</subject><subject>Tin</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGr_gF4WPG87-dokx1r8KKxYaMVjyG4SSam7bbIr-O_dWulcZg7vMzM8CN1imGIMarZZrF43UwJYTImQgIFcoBHBvMipkvzyPHO4RpOUtjAUlyCAjpD4MN7FvHTfbpfN-3UzW3XZut0Fm5fh0AebLZvORRu871Nom-yhbWxoPm_QlTe75Cb_fYzenx43i5e8fHteLuZlXlOqulwSJTwHJiz2UhRVDTVgLCh1lhpqmBdVZWpcKG5FJRkRlmFlqqqwfHiRKzpG96e9-9geepc6vW372AwnNVaKsQI440OKnFJ1bFOKzut9DF8m_mgM-uhI_znSR0f639EA3Z2g4Jw7A5IwWTBCfwEmcmB_</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Rautiainen, Antti</creator><creator>Vuorinen, Vesa</creator><creator>Heikkinen, Hannele</creator><creator>Paulasto-Krockel, Mervi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3749-4641</orcidid><orcidid>https://orcid.org/0000-0003-0347-5012</orcidid></search><sort><creationdate>20180201</creationdate><title>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</title><author>Rautiainen, Antti ; Vuorinen, Vesa ; Heikkinen, Hannele ; Paulasto-Krockel, Mervi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesive bonding</topic><topic>Au–Sn–Pt system</topic><topic>Bond strength</topic><topic>Bonding</topic><topic>Bonding strength</topic><topic>Buffer layers</topic><topic>CMOS</topic><topic>Encapsulation</topic><topic>Gold</topic><topic>Interdiffusion</topic><topic>intermetallic compounds (IMCs)</topic><topic>Level (quantity)</topic><topic>Metallization</topic><topic>Metallizing</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Molybdenum</topic><topic>Platinum</topic><topic>remelting temperature</topic><topic>Shear strength</topic><topic>Shock tests</topic><topic>solid–liquid interdiffusion (SLID) bonding</topic><topic>Systems analysis</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal shock</topic><topic>Thickness</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rautiainen, Antti</creatorcontrib><creatorcontrib>Vuorinen, Vesa</creatorcontrib><creatorcontrib>Heikkinen, Hannele</creatorcontrib><creatorcontrib>Paulasto-Krockel, Mervi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rautiainen, Antti</au><au>Vuorinen, Vesa</au><au>Heikkinen, Hannele</au><au>Paulasto-Krockel, Mervi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>8</volume><issue>2</issue><spage>169</spage><epage>176</epage><pages>169-176</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2017.2780102</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3749-4641</orcidid><orcidid>https://orcid.org/0000-0003-0347-5012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2018-02, Vol.8 (2), p.169-176 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2017_2780102 |
source | IEEE Electronic Library (IEL) |
subjects | Adhesive bonding Au–Sn–Pt system Bond strength Bonding Bonding strength Buffer layers CMOS Encapsulation Gold Interdiffusion intermetallic compounds (IMCs) Level (quantity) Metallization Metallizing Microelectromechanical systems Micromechanical devices Molybdenum Platinum remelting temperature Shear strength Shock tests solid–liquid interdiffusion (SLID) bonding Systems analysis Tensile strength Tensile tests Thermal shock Thickness Tin |
title | Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer-Level%20AuSn/Pt%20Solid-Liquid%20Interdiffusion%20Bonding&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Rautiainen,%20Antti&rft.date=2018-02-01&rft.volume=8&rft.issue=2&rft.spage=169&rft.epage=176&rft.pages=169-176&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2017.2780102&rft_dat=%3Cproquest_RIE%3E1994460545%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994460545&rft_id=info:pmid/&rft_ieee_id=8248642&rfr_iscdi=true |