Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding

In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2018-02, Vol.8 (2), p.169-176
Hauptverfasser: Rautiainen, Antti, Vuorinen, Vesa, Heikkinen, Hannele, Paulasto-Krockel, Mervi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 2
container_start_page 169
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 8
creator Rautiainen, Antti
Vuorinen, Vesa
Heikkinen, Hannele
Paulasto-Krockel, Mervi
description In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly.
doi_str_mv 10.1109/TCPMT.2017.2780102
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2017_2780102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8248642</ieee_id><sourcerecordid>1994460545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGr_gF4WPG87-dokx1r8KKxYaMVjyG4SSam7bbIr-O_dWulcZg7vMzM8CN1imGIMarZZrF43UwJYTImQgIFcoBHBvMipkvzyPHO4RpOUtjAUlyCAjpD4MN7FvHTfbpfN-3UzW3XZut0Fm5fh0AebLZvORRu871Nom-yhbWxoPm_QlTe75Cb_fYzenx43i5e8fHteLuZlXlOqulwSJTwHJiz2UhRVDTVgLCh1lhpqmBdVZWpcKG5FJRkRlmFlqqqwfHiRKzpG96e9-9geepc6vW372AwnNVaKsQI440OKnFJ1bFOKzut9DF8m_mgM-uhI_znSR0f639EA3Z2g4Jw7A5IwWTBCfwEmcmB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994460545</pqid></control><display><type>article</type><title>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</title><source>IEEE Electronic Library (IEL)</source><creator>Rautiainen, Antti ; Vuorinen, Vesa ; Heikkinen, Hannele ; Paulasto-Krockel, Mervi</creator><creatorcontrib>Rautiainen, Antti ; Vuorinen, Vesa ; Heikkinen, Hannele ; Paulasto-Krockel, Mervi</creatorcontrib><description>In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2017.2780102</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adhesive bonding ; Au–Sn–Pt system ; Bond strength ; Bonding ; Bonding strength ; Buffer layers ; CMOS ; Encapsulation ; Gold ; Interdiffusion ; intermetallic compounds (IMCs) ; Level (quantity) ; Metallization ; Metallizing ; Microelectromechanical systems ; Micromechanical devices ; Molybdenum ; Platinum ; remelting temperature ; Shear strength ; Shock tests ; solid–liquid interdiffusion (SLID) bonding ; Systems analysis ; Tensile strength ; Tensile tests ; Thermal shock ; Thickness ; Tin</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2018-02, Vol.8 (2), p.169-176</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</citedby><cites>FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</cites><orcidid>0000-0003-3749-4641 ; 0000-0003-0347-5012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8248642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8248642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rautiainen, Antti</creatorcontrib><creatorcontrib>Vuorinen, Vesa</creatorcontrib><creatorcontrib>Heikkinen, Hannele</creatorcontrib><creatorcontrib>Paulasto-Krockel, Mervi</creatorcontrib><title>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly.</description><subject>Adhesive bonding</subject><subject>Au–Sn–Pt system</subject><subject>Bond strength</subject><subject>Bonding</subject><subject>Bonding strength</subject><subject>Buffer layers</subject><subject>CMOS</subject><subject>Encapsulation</subject><subject>Gold</subject><subject>Interdiffusion</subject><subject>intermetallic compounds (IMCs)</subject><subject>Level (quantity)</subject><subject>Metallization</subject><subject>Metallizing</subject><subject>Microelectromechanical systems</subject><subject>Micromechanical devices</subject><subject>Molybdenum</subject><subject>Platinum</subject><subject>remelting temperature</subject><subject>Shear strength</subject><subject>Shock tests</subject><subject>solid–liquid interdiffusion (SLID) bonding</subject><subject>Systems analysis</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal shock</subject><subject>Thickness</subject><subject>Tin</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGr_gF4WPG87-dokx1r8KKxYaMVjyG4SSam7bbIr-O_dWulcZg7vMzM8CN1imGIMarZZrF43UwJYTImQgIFcoBHBvMipkvzyPHO4RpOUtjAUlyCAjpD4MN7FvHTfbpfN-3UzW3XZut0Fm5fh0AebLZvORRu871Nom-yhbWxoPm_QlTe75Cb_fYzenx43i5e8fHteLuZlXlOqulwSJTwHJiz2UhRVDTVgLCh1lhpqmBdVZWpcKG5FJRkRlmFlqqqwfHiRKzpG96e9-9geepc6vW372AwnNVaKsQI440OKnFJ1bFOKzut9DF8m_mgM-uhI_znSR0f639EA3Z2g4Jw7A5IwWTBCfwEmcmB_</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Rautiainen, Antti</creator><creator>Vuorinen, Vesa</creator><creator>Heikkinen, Hannele</creator><creator>Paulasto-Krockel, Mervi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3749-4641</orcidid><orcidid>https://orcid.org/0000-0003-0347-5012</orcidid></search><sort><creationdate>20180201</creationdate><title>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</title><author>Rautiainen, Antti ; Vuorinen, Vesa ; Heikkinen, Hannele ; Paulasto-Krockel, Mervi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8297f5047d1f876bc0c011733ed3a3a4f7bbac1695d7b8427d419abb6d5058593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesive bonding</topic><topic>Au–Sn–Pt system</topic><topic>Bond strength</topic><topic>Bonding</topic><topic>Bonding strength</topic><topic>Buffer layers</topic><topic>CMOS</topic><topic>Encapsulation</topic><topic>Gold</topic><topic>Interdiffusion</topic><topic>intermetallic compounds (IMCs)</topic><topic>Level (quantity)</topic><topic>Metallization</topic><topic>Metallizing</topic><topic>Microelectromechanical systems</topic><topic>Micromechanical devices</topic><topic>Molybdenum</topic><topic>Platinum</topic><topic>remelting temperature</topic><topic>Shear strength</topic><topic>Shock tests</topic><topic>solid–liquid interdiffusion (SLID) bonding</topic><topic>Systems analysis</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal shock</topic><topic>Thickness</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rautiainen, Antti</creatorcontrib><creatorcontrib>Vuorinen, Vesa</creatorcontrib><creatorcontrib>Heikkinen, Hannele</creatorcontrib><creatorcontrib>Paulasto-Krockel, Mervi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rautiainen, Antti</au><au>Vuorinen, Vesa</au><au>Heikkinen, Hannele</au><au>Paulasto-Krockel, Mervi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>8</volume><issue>2</issue><spage>169</spage><epage>176</epage><pages>169-176</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>In this paper, wafer-level AuSn/Pt solid-liquid interdiffusion bonding for hermetic encapsulation of microelectromechanical systems (MEMS) is evaluated. Although AuSn is used for bonding of ICs, the implementation of AuSn diffusion bonding in MEMS applications requires thorough understanding of its compatibility with the complete layer stack including adhesion, buffer, and metallization layers. Partitioning of the layer stacks is possible in MEMS devices consisting of several silicon wafers since the device wafer carrying functional structures and the encapsulation wafer have different restrictions on process integration and applicable metal deposition techniques. In this paper, CMOS/MEMS compatible sputtered platinum is utilized on the device wafer as a contact metallization for Au-Sn metallized cap wafer. The role of the platinum layer thickness as well as the nickel and molybdenum buffer layers on mechanical reliability were tested. The mechanical shear and tensile tests were performed for samples after bonding as well as after high-temperature storage and thermal shock tests. The results were rationalized based on the combined microstructural, thermodynamic, and fracture surface analyses. High-strength and thermodynamically stable bonds were achieved, exhibiting shear strength up to ~180 MPa and tensile strength up to ~80 MPa. Platinum was consumed completely during bonding and was observed to dissolve mainly into the (Au,Pt)Sn phase. Thicker platinum layer (200 versus 100 nm) increased the (Au,Pt)Sn phase thickness and resulted in higher strength. The molybdenum buffer layer under the platinum metallization increased the tensile strength significantly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2017.2780102</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3749-4641</orcidid><orcidid>https://orcid.org/0000-0003-0347-5012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2018-02, Vol.8 (2), p.169-176
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2017_2780102
source IEEE Electronic Library (IEL)
subjects Adhesive bonding
Au–Sn–Pt system
Bond strength
Bonding
Bonding strength
Buffer layers
CMOS
Encapsulation
Gold
Interdiffusion
intermetallic compounds (IMCs)
Level (quantity)
Metallization
Metallizing
Microelectromechanical systems
Micromechanical devices
Molybdenum
Platinum
remelting temperature
Shear strength
Shock tests
solid–liquid interdiffusion (SLID) bonding
Systems analysis
Tensile strength
Tensile tests
Thermal shock
Thickness
Tin
title Wafer-Level AuSn/Pt Solid-Liquid Interdiffusion Bonding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A22%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wafer-Level%20AuSn/Pt%20Solid-Liquid%20Interdiffusion%20Bonding&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Rautiainen,%20Antti&rft.date=2018-02-01&rft.volume=8&rft.issue=2&rft.spage=169&rft.epage=176&rft.pages=169-176&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2017.2780102&rft_dat=%3Cproquest_RIE%3E1994460545%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994460545&rft_id=info:pmid/&rft_ieee_id=8248642&rfr_iscdi=true