Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations
Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2017-05, Vol.7 (5), p.687-697 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 697 |
---|---|
container_issue | 5 |
container_start_page | 687 |
container_title | IEEE transactions on components, packaging, and manufacturing technology (2011) |
container_volume | 7 |
creator | Zheng Zhang Tsui-Wei Weng Daniel, Luca |
description | Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters. |
doi_str_mv | 10.1109/TCPMT.2016.2628703 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2016_2628703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7775008</ieee_id><sourcerecordid>2174451605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIVNAfgIslzim2Ez9yhBYoUhEFpRyxnGRTXLVxsVOk_j3uQ93LPmZmNRqEbigZUEry-2I4fSsGjFAxYIIpSdIz1GOUiyTNFT8_zZxcon4ICxKLKxJ5PfT9aOfJyHQGF9AG5_EnVO4P_BY3cRnb-U8ysqsIWdeaJZ61FfjO2Lbb4o-NaTvb2Mp0EcSuwVPvKggBfxlv98dwjS4aswzQP_YrNHt-KobjZPL-8jp8mCRVRniX8JzXgte1qA0TqVIloTkoXoo6BUZkrnaGIwANSNaUNa-5MCqllSyBZkKkV-ju8Hft3e8GQqcXbuOj46AZlVnGqSA8stiBVXkXgodGr71dGb_VlOhdlHofpd5FqY9RRtHtQWQB4CSQUnJCVPoPyT5voA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174451605</pqid></control><display><type>article</type><title>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</title><source>IEEE Electronic Library Online</source><creator>Zheng Zhang ; Tsui-Wei Weng ; Daniel, Luca</creator><creatorcontrib>Zheng Zhang ; Tsui-Wei Weng ; Daniel, Luca</creatorcontrib><description>Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2016.2628703</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Chaos ; Circuit design ; Computational modeling ; Computer simulation ; Data management ; Data recovery ; Economic models ; High dimensionality ; Integrated circuit modeling ; Integrated circuits ; integrated circuits (ICs) ; integrated photonics ; microelectromechanical system (MEMS) ; Microelectromechanical systems ; Monte Carlo simulation ; Order parameters ; Photonics ; polynomial chaos ; process variation ; Spectral methods ; Stochastic processes ; stochastic simulation ; Tensile stress ; tensor ; Tensors ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-05, Vol.7 (5), p.687-697</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</citedby><cites>FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</cites><orcidid>0000-0002-2292-0030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7775008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7775008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Tsui-Wei Weng</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><title>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters.</description><subject>Algorithms</subject><subject>Chaos</subject><subject>Circuit design</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Data management</subject><subject>Data recovery</subject><subject>Economic models</subject><subject>High dimensionality</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>integrated circuits (ICs)</subject><subject>integrated photonics</subject><subject>microelectromechanical system (MEMS)</subject><subject>Microelectromechanical systems</subject><subject>Monte Carlo simulation</subject><subject>Order parameters</subject><subject>Photonics</subject><subject>polynomial chaos</subject><subject>process variation</subject><subject>Spectral methods</subject><subject>Stochastic processes</subject><subject>stochastic simulation</subject><subject>Tensile stress</subject><subject>tensor</subject><subject>Tensors</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIVNAfgIslzim2Ez9yhBYoUhEFpRyxnGRTXLVxsVOk_j3uQ93LPmZmNRqEbigZUEry-2I4fSsGjFAxYIIpSdIz1GOUiyTNFT8_zZxcon4ICxKLKxJ5PfT9aOfJyHQGF9AG5_EnVO4P_BY3cRnb-U8ysqsIWdeaJZ61FfjO2Lbb4o-NaTvb2Mp0EcSuwVPvKggBfxlv98dwjS4aswzQP_YrNHt-KobjZPL-8jp8mCRVRniX8JzXgte1qA0TqVIloTkoXoo6BUZkrnaGIwANSNaUNa-5MCqllSyBZkKkV-ju8Hft3e8GQqcXbuOj46AZlVnGqSA8stiBVXkXgodGr71dGb_VlOhdlHofpd5FqY9RRtHtQWQB4CSQUnJCVPoPyT5voA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zheng Zhang</creator><creator>Tsui-Wei Weng</creator><creator>Daniel, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid></search><sort><creationdate>20170501</creationdate><title>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</title><author>Zheng Zhang ; Tsui-Wei Weng ; Daniel, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chaos</topic><topic>Circuit design</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Data management</topic><topic>Data recovery</topic><topic>Economic models</topic><topic>High dimensionality</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>integrated circuits (ICs)</topic><topic>integrated photonics</topic><topic>microelectromechanical system (MEMS)</topic><topic>Microelectromechanical systems</topic><topic>Monte Carlo simulation</topic><topic>Order parameters</topic><topic>Photonics</topic><topic>polynomial chaos</topic><topic>process variation</topic><topic>Spectral methods</topic><topic>Stochastic processes</topic><topic>stochastic simulation</topic><topic>Tensile stress</topic><topic>tensor</topic><topic>Tensors</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Tsui-Wei Weng</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng Zhang</au><au>Tsui-Wei Weng</au><au>Daniel, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>7</volume><issue>5</issue><spage>687</spage><epage>697</epage><pages>687-697</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2016.2628703</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3950 |
ispartof | IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-05, Vol.7 (5), p.687-697 |
issn | 2156-3950 2156-3985 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCPMT_2016_2628703 |
source | IEEE Electronic Library Online |
subjects | Algorithms Chaos Circuit design Computational modeling Computer simulation Data management Data recovery Economic models High dimensionality Integrated circuit modeling Integrated circuits integrated circuits (ICs) integrated photonics microelectromechanical system (MEMS) Microelectromechanical systems Monte Carlo simulation Order parameters Photonics polynomial chaos process variation Spectral methods Stochastic processes stochastic simulation Tensile stress tensor Tensors Uncertainty uncertainty quantification |
title | Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big-Data%20Tensor%20Recovery%20for%20High-Dimensional%20Uncertainty%20Quantification%20of%20Process%20Variations&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Zheng%20Zhang&rft.date=2017-05-01&rft.volume=7&rft.issue=5&rft.spage=687&rft.epage=697&rft.pages=687-697&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2016.2628703&rft_dat=%3Cproquest_RIE%3E2174451605%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174451605&rft_id=info:pmid/&rft_ieee_id=7775008&rfr_iscdi=true |