Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations

Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on components, packaging, and manufacturing technology (2011) packaging, and manufacturing technology (2011), 2017-05, Vol.7 (5), p.687-697
Hauptverfasser: Zheng Zhang, Tsui-Wei Weng, Daniel, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 5
container_start_page 687
container_title IEEE transactions on components, packaging, and manufacturing technology (2011)
container_volume 7
creator Zheng Zhang
Tsui-Wei Weng
Daniel, Luca
description Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters.
doi_str_mv 10.1109/TCPMT.2016.2628703
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCPMT_2016_2628703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7775008</ieee_id><sourcerecordid>2174451605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIVNAfgIslzim2Ez9yhBYoUhEFpRyxnGRTXLVxsVOk_j3uQ93LPmZmNRqEbigZUEry-2I4fSsGjFAxYIIpSdIz1GOUiyTNFT8_zZxcon4ICxKLKxJ5PfT9aOfJyHQGF9AG5_EnVO4P_BY3cRnb-U8ysqsIWdeaJZ61FfjO2Lbb4o-NaTvb2Mp0EcSuwVPvKggBfxlv98dwjS4aswzQP_YrNHt-KobjZPL-8jp8mCRVRniX8JzXgte1qA0TqVIloTkoXoo6BUZkrnaGIwANSNaUNa-5MCqllSyBZkKkV-ju8Hft3e8GQqcXbuOj46AZlVnGqSA8stiBVXkXgodGr71dGb_VlOhdlHofpd5FqY9RRtHtQWQB4CSQUnJCVPoPyT5voA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174451605</pqid></control><display><type>article</type><title>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</title><source>IEEE Electronic Library Online</source><creator>Zheng Zhang ; Tsui-Wei Weng ; Daniel, Luca</creator><creatorcontrib>Zheng Zhang ; Tsui-Wei Weng ; Daniel, Luca</creatorcontrib><description>Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters.</description><identifier>ISSN: 2156-3950</identifier><identifier>EISSN: 2156-3985</identifier><identifier>DOI: 10.1109/TCPMT.2016.2628703</identifier><identifier>CODEN: ITCPC8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Chaos ; Circuit design ; Computational modeling ; Computer simulation ; Data management ; Data recovery ; Economic models ; High dimensionality ; Integrated circuit modeling ; Integrated circuits ; integrated circuits (ICs) ; integrated photonics ; microelectromechanical system (MEMS) ; Microelectromechanical systems ; Monte Carlo simulation ; Order parameters ; Photonics ; polynomial chaos ; process variation ; Spectral methods ; Stochastic processes ; stochastic simulation ; Tensile stress ; tensor ; Tensors ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-05, Vol.7 (5), p.687-697</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</citedby><cites>FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</cites><orcidid>0000-0002-2292-0030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7775008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7775008$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Tsui-Wei Weng</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><title>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</title><title>IEEE transactions on components, packaging, and manufacturing technology (2011)</title><addtitle>TCPMT</addtitle><description>Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters.</description><subject>Algorithms</subject><subject>Chaos</subject><subject>Circuit design</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Data management</subject><subject>Data recovery</subject><subject>Economic models</subject><subject>High dimensionality</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>integrated circuits (ICs)</subject><subject>integrated photonics</subject><subject>microelectromechanical system (MEMS)</subject><subject>Microelectromechanical systems</subject><subject>Monte Carlo simulation</subject><subject>Order parameters</subject><subject>Photonics</subject><subject>polynomial chaos</subject><subject>process variation</subject><subject>Spectral methods</subject><subject>Stochastic processes</subject><subject>stochastic simulation</subject><subject>Tensile stress</subject><subject>tensor</subject><subject>Tensors</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>2156-3950</issn><issn>2156-3985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQtBBIVNAfgIslzim2Ez9yhBYoUhEFpRyxnGRTXLVxsVOk_j3uQ93LPmZmNRqEbigZUEry-2I4fSsGjFAxYIIpSdIz1GOUiyTNFT8_zZxcon4ICxKLKxJ5PfT9aOfJyHQGF9AG5_EnVO4P_BY3cRnb-U8ysqsIWdeaJZ61FfjO2Lbb4o-NaTvb2Mp0EcSuwVPvKggBfxlv98dwjS4aswzQP_YrNHt-KobjZPL-8jp8mCRVRniX8JzXgte1qA0TqVIloTkoXoo6BUZkrnaGIwANSNaUNa-5MCqllSyBZkKkV-ju8Hft3e8GQqcXbuOj46AZlVnGqSA8stiBVXkXgodGr71dGb_VlOhdlHofpd5FqY9RRtHtQWQB4CSQUnJCVPoPyT5voA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Zheng Zhang</creator><creator>Tsui-Wei Weng</creator><creator>Daniel, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid></search><sort><creationdate>20170501</creationdate><title>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</title><author>Zheng Zhang ; Tsui-Wei Weng ; Daniel, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-595d65dd6da26388b019e85b6d3e207980058638efe72fbd5d56a831c7be14663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chaos</topic><topic>Circuit design</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Data management</topic><topic>Data recovery</topic><topic>Economic models</topic><topic>High dimensionality</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>integrated circuits (ICs)</topic><topic>integrated photonics</topic><topic>microelectromechanical system (MEMS)</topic><topic>Microelectromechanical systems</topic><topic>Monte Carlo simulation</topic><topic>Order parameters</topic><topic>Photonics</topic><topic>polynomial chaos</topic><topic>process variation</topic><topic>Spectral methods</topic><topic>Stochastic processes</topic><topic>stochastic simulation</topic><topic>Tensile stress</topic><topic>tensor</topic><topic>Tensors</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng Zhang</creatorcontrib><creatorcontrib>Tsui-Wei Weng</creatorcontrib><creatorcontrib>Daniel, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng Zhang</au><au>Tsui-Wei Weng</au><au>Daniel, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations</atitle><jtitle>IEEE transactions on components, packaging, and manufacturing technology (2011)</jtitle><stitle>TCPMT</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>7</volume><issue>5</issue><spage>687</spage><epage>697</epage><pages>687-697</pages><issn>2156-3950</issn><eissn>2156-3985</eissn><coden>ITCPC8</coden><abstract>Fabrication process variations are a major source of yield degradation in the nanoscale design of integrated circuits (ICs), microelectromechanical systems (MEMSs), and photonic circuits. Stochastic spectral methods are a promising technique to quantify the uncertainties caused by process variations. Despite their superior efficiency over Monte Carlo for many design cases, stochastic spectral methods suffer from the curse of dimensionality, i.e., their computational cost grows very fast as the number of random parameters increases. In order to solve this challenging problem, this paper presents a high-dimensional uncertainty quantification algorithm from a big data perspective. Specifically, we show that the huge number of (e.g., 1.5 × 10 27 ) simulation samples in standard stochastic collocation can be reduced to a very small one (e.g., 500) by exploiting some hidden structures of a high-dimensional data array. This idea is formulated as a tensor recovery problem with sparse and low-rank constraints, and it is solved with an alternating minimization approach. The numerical results show that our approach can efficiently simulate some IC, MEMS, and photonic problems with over 50 independent random parameters, whereas the traditional algorithm can only deal with a small number of random parameters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCPMT.2016.2628703</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2292-0030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3950
ispartof IEEE transactions on components, packaging, and manufacturing technology (2011), 2017-05, Vol.7 (5), p.687-697
issn 2156-3950
2156-3985
language eng
recordid cdi_crossref_primary_10_1109_TCPMT_2016_2628703
source IEEE Electronic Library Online
subjects Algorithms
Chaos
Circuit design
Computational modeling
Computer simulation
Data management
Data recovery
Economic models
High dimensionality
Integrated circuit modeling
Integrated circuits
integrated circuits (ICs)
integrated photonics
microelectromechanical system (MEMS)
Microelectromechanical systems
Monte Carlo simulation
Order parameters
Photonics
polynomial chaos
process variation
Spectral methods
Stochastic processes
stochastic simulation
Tensile stress
tensor
Tensors
Uncertainty
uncertainty quantification
title Big-Data Tensor Recovery for High-Dimensional Uncertainty Quantification of Process Variations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big-Data%20Tensor%20Recovery%20for%20High-Dimensional%20Uncertainty%20Quantification%20of%20Process%20Variations&rft.jtitle=IEEE%20transactions%20on%20components,%20packaging,%20and%20manufacturing%20technology%20(2011)&rft.au=Zheng%20Zhang&rft.date=2017-05-01&rft.volume=7&rft.issue=5&rft.spage=687&rft.epage=697&rft.pages=687-697&rft.issn=2156-3950&rft.eissn=2156-3985&rft.coden=ITCPC8&rft_id=info:doi/10.1109/TCPMT.2016.2628703&rft_dat=%3Cproquest_RIE%3E2174451605%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174451605&rft_id=info:pmid/&rft_ieee_id=7775008&rfr_iscdi=true