Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes
Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounde...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2024-10, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on communications |
container_volume | |
creator | Li, Guorong Wang, Shiguo Zhao, Shancheng |
description | Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively. |
doi_str_mv | 10.1109/TCOMM.2024.3484935 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2024_3484935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731861</ieee_id><sourcerecordid>10_1109_TCOMM_2024_3484935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641-4ae4b40118a7e0f1a5ccfd3dae82e1fb85284cd96aa36e739882f08025cf145e3</originalsourceid><addsrcrecordid>eNpN0M1OAjEUhuHGaCKiN2Bc9AYGT_9mOksdREkgGMN-UtpTrcKUtIPGu1eEhauTnOT9Fg8h1wxGjEF9u2wW8_mIA5cjIbWshTohA6aULkCr6pQMAGooyqrS5-Qi53cAkCDEgCymPSbTh0-k93HXOXR0HHJvOot0jDa60L3Sr9C_0RfTubihk3XYbvdPHxN9TtHtbF_MwgfSJjrMl-TMm3XGq-MdkuXkYdk8FbPF47S5mxW2lKyQBuVKAmPaVAieGWWtd8IZ1ByZX2nFtbSuLo0RJVai1pp70MCV9UwqFEPCD7M2xZwT-nabwsak75ZBuxdp_0TavUh7FPmNbg5RQMR_QSWYLpn4ATFKXZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Guorong ; Wang, Shiguo ; Zhao, Shancheng</creator><creatorcontrib>Li, Guorong ; Wang, Shiguo ; Zhao, Shancheng</creatorcontrib><description>Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3484935</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>bit flipping ; Codes ; Complexity theory ; Decoding ; Encoding ; forward error correction codes ; Heuristic algorithms ; iterative bounded distance decoding ; Iterative decoding ; Noise measurement ; Optical fiber communications ; Performance gain ; Product codes ; product-like codes ; Reliability</subject><ispartof>IEEE transactions on communications, 2024-10, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0544-8416 ; 0000-0003-2566-6848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10731861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><creatorcontrib>Zhao, Shancheng</creatorcontrib><title>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively.</description><subject>bit flipping</subject><subject>Codes</subject><subject>Complexity theory</subject><subject>Decoding</subject><subject>Encoding</subject><subject>forward error correction codes</subject><subject>Heuristic algorithms</subject><subject>iterative bounded distance decoding</subject><subject>Iterative decoding</subject><subject>Noise measurement</subject><subject>Optical fiber communications</subject><subject>Performance gain</subject><subject>Product codes</subject><subject>product-like codes</subject><subject>Reliability</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0M1OAjEUhuHGaCKiN2Bc9AYGT_9mOksdREkgGMN-UtpTrcKUtIPGu1eEhauTnOT9Fg8h1wxGjEF9u2wW8_mIA5cjIbWshTohA6aULkCr6pQMAGooyqrS5-Qi53cAkCDEgCymPSbTh0-k93HXOXR0HHJvOot0jDa60L3Sr9C_0RfTubihk3XYbvdPHxN9TtHtbF_MwgfSJjrMl-TMm3XGq-MdkuXkYdk8FbPF47S5mxW2lKyQBuVKAmPaVAieGWWtd8IZ1ByZX2nFtbSuLo0RJVai1pp70MCV9UwqFEPCD7M2xZwT-nabwsak75ZBuxdp_0TavUh7FPmNbg5RQMR_QSWYLpn4ATFKXZE</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Li, Guorong</creator><creator>Wang, Shiguo</creator><creator>Zhao, Shancheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0544-8416</orcidid><orcidid>https://orcid.org/0000-0003-2566-6848</orcidid></search><sort><creationdate>20241022</creationdate><title>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</title><author>Li, Guorong ; Wang, Shiguo ; Zhao, Shancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641-4ae4b40118a7e0f1a5ccfd3dae82e1fb85284cd96aa36e739882f08025cf145e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bit flipping</topic><topic>Codes</topic><topic>Complexity theory</topic><topic>Decoding</topic><topic>Encoding</topic><topic>forward error correction codes</topic><topic>Heuristic algorithms</topic><topic>iterative bounded distance decoding</topic><topic>Iterative decoding</topic><topic>Noise measurement</topic><topic>Optical fiber communications</topic><topic>Performance gain</topic><topic>Product codes</topic><topic>product-like codes</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><creatorcontrib>Zhao, Shancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Guorong</au><au>Wang, Shiguo</au><au>Zhao, Shancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-10-22</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3484935</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0544-8416</orcidid><orcidid>https://orcid.org/0000-0003-2566-6848</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2024-10, p.1-1 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2024_3484935 |
source | IEEE Electronic Library (IEL) |
subjects | bit flipping Codes Complexity theory Decoding Encoding forward error correction codes Heuristic algorithms iterative bounded distance decoding Iterative decoding Noise measurement Optical fiber communications Performance gain Product codes product-like codes Reliability |
title | Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Bounded%20Distance%20Decoding%20with%20Random%20Flipping%20for%20Product-Like%20Codes&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Li,%20Guorong&rft.date=2024-10-22&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3484935&rft_dat=%3Ccrossref_RIE%3E10_1109_TCOMM_2024_3484935%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10731861&rfr_iscdi=true |