Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes

Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2024-10, p.1-1
Hauptverfasser: Li, Guorong, Wang, Shiguo, Zhao, Shancheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on communications
container_volume
creator Li, Guorong
Wang, Shiguo
Zhao, Shancheng
description Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively.
doi_str_mv 10.1109/TCOMM.2024.3484935
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2024_3484935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10731861</ieee_id><sourcerecordid>10_1109_TCOMM_2024_3484935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641-4ae4b40118a7e0f1a5ccfd3dae82e1fb85284cd96aa36e739882f08025cf145e3</originalsourceid><addsrcrecordid>eNpN0M1OAjEUhuHGaCKiN2Bc9AYGT_9mOksdREkgGMN-UtpTrcKUtIPGu1eEhauTnOT9Fg8h1wxGjEF9u2wW8_mIA5cjIbWshTohA6aULkCr6pQMAGooyqrS5-Qi53cAkCDEgCymPSbTh0-k93HXOXR0HHJvOot0jDa60L3Sr9C_0RfTubihk3XYbvdPHxN9TtHtbF_MwgfSJjrMl-TMm3XGq-MdkuXkYdk8FbPF47S5mxW2lKyQBuVKAmPaVAieGWWtd8IZ1ByZX2nFtbSuLo0RJVai1pp70MCV9UwqFEPCD7M2xZwT-nabwsak75ZBuxdp_0TavUh7FPmNbg5RQMR_QSWYLpn4ATFKXZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Guorong ; Wang, Shiguo ; Zhao, Shancheng</creator><creatorcontrib>Li, Guorong ; Wang, Shiguo ; Zhao, Shancheng</creatorcontrib><description>Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3484935</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>bit flipping ; Codes ; Complexity theory ; Decoding ; Encoding ; forward error correction codes ; Heuristic algorithms ; iterative bounded distance decoding ; Iterative decoding ; Noise measurement ; Optical fiber communications ; Performance gain ; Product codes ; product-like codes ; Reliability</subject><ispartof>IEEE transactions on communications, 2024-10, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0544-8416 ; 0000-0003-2566-6848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10731861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10731861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><creatorcontrib>Zhao, Shancheng</creatorcontrib><title>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively.</description><subject>bit flipping</subject><subject>Codes</subject><subject>Complexity theory</subject><subject>Decoding</subject><subject>Encoding</subject><subject>forward error correction codes</subject><subject>Heuristic algorithms</subject><subject>iterative bounded distance decoding</subject><subject>Iterative decoding</subject><subject>Noise measurement</subject><subject>Optical fiber communications</subject><subject>Performance gain</subject><subject>Product codes</subject><subject>product-like codes</subject><subject>Reliability</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpN0M1OAjEUhuHGaCKiN2Bc9AYGT_9mOksdREkgGMN-UtpTrcKUtIPGu1eEhauTnOT9Fg8h1wxGjEF9u2wW8_mIA5cjIbWshTohA6aULkCr6pQMAGooyqrS5-Qi53cAkCDEgCymPSbTh0-k93HXOXR0HHJvOot0jDa60L3Sr9C_0RfTubihk3XYbvdPHxN9TtHtbF_MwgfSJjrMl-TMm3XGq-MdkuXkYdk8FbPF47S5mxW2lKyQBuVKAmPaVAieGWWtd8IZ1ByZX2nFtbSuLo0RJVai1pp70MCV9UwqFEPCD7M2xZwT-nabwsak75ZBuxdp_0TavUh7FPmNbg5RQMR_QSWYLpn4ATFKXZE</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Li, Guorong</creator><creator>Wang, Shiguo</creator><creator>Zhao, Shancheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0544-8416</orcidid><orcidid>https://orcid.org/0000-0003-2566-6848</orcidid></search><sort><creationdate>20241022</creationdate><title>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</title><author>Li, Guorong ; Wang, Shiguo ; Zhao, Shancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641-4ae4b40118a7e0f1a5ccfd3dae82e1fb85284cd96aa36e739882f08025cf145e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bit flipping</topic><topic>Codes</topic><topic>Complexity theory</topic><topic>Decoding</topic><topic>Encoding</topic><topic>forward error correction codes</topic><topic>Heuristic algorithms</topic><topic>iterative bounded distance decoding</topic><topic>Iterative decoding</topic><topic>Noise measurement</topic><topic>Optical fiber communications</topic><topic>Performance gain</topic><topic>Product codes</topic><topic>product-like codes</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Guorong</creatorcontrib><creatorcontrib>Wang, Shiguo</creatorcontrib><creatorcontrib>Zhao, Shancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Guorong</au><au>Wang, Shiguo</au><au>Zhao, Shancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-10-22</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Product-like codes are widely used in high-speed communication systems since they can be decoded with low-complexity hard decision decoders (HDDs). To meet the growing demand of data rates, enhanced HDDs are required. In this paper, we propose a novel soft-aided HDD (SA-HDD), termed iterative bounded distance decoding with random flipping (iBDD-RF), for product-like codes. In iBDD-RF, the soft reliability of a bit is a weighted sum of the output of bounded distance decoder (BDD) and the channel log-likelihood ratio (LLR). When the amplitude of the soft reliability of a bit is less than a given threshold, it is flipped with a given probability. This random flipping may make the decoder escape from the local optimum. To optimize the threshold and the flipping probability, we derive the density evolution (DE) equations of iBDD-RF for product codes (PCs) and staircase codes (SCs). Our extensive numerical results show that iBDD-RF outperforms iBDD with scaled reliability (iBDD-SR) over the binary-input additive white Gaussian noise (Bi-AWGN) channel. Particularly, for a PC with (255,239,2) Bose-Chaudhuri-Hocquenghem (BCH) code and an SC with (254,230,3) BCH code, iBDD-RF performs about 0.25 dB and 0.28 dB better than iBDD-SR, respectively.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3484935</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0544-8416</orcidid><orcidid>https://orcid.org/0000-0003-2566-6848</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2024-10, p.1-1
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2024_3484935
source IEEE Electronic Library (IEL)
subjects bit flipping
Codes
Complexity theory
Decoding
Encoding
forward error correction codes
Heuristic algorithms
iterative bounded distance decoding
Iterative decoding
Noise measurement
Optical fiber communications
Performance gain
Product codes
product-like codes
Reliability
title Iterative Bounded Distance Decoding with Random Flipping for Product-Like Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Bounded%20Distance%20Decoding%20with%20Random%20Flipping%20for%20Product-Like%20Codes&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Li,%20Guorong&rft.date=2024-10-22&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3484935&rft_dat=%3Ccrossref_RIE%3E10_1109_TCOMM_2024_3484935%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10731861&rfr_iscdi=true