Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines

The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2024-09, p.1-1
Hauptverfasser: Khalid, Uman, Rehman, Junaid ur, Jung, Haejoon, Duong, Trung Q., Dobre, Octavia A., Shin, Hyundong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on communications
container_volume
creator Khalid, Uman
Rehman, Junaid ur
Jung, Haejoon
Duong, Trung Q.
Dobre, Octavia A.
Shin, Hyundong
description The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems.
doi_str_mv 10.1109/TCOMM.2024.3469555
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2024_3469555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10697201</ieee_id><sourcerecordid>10_1109_TCOMM_2024_3469555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641-b916ff0a0ac96c29d0b64faba2d8707002d2c2a6157ddb79d0763d605440dca03</originalsourceid><addsrcrecordid>eNpNkF1LwzAYhYMoWKd_QLzIH-h8k-aj8U6GH4N2c1jxsqRJqtWtHUmn7N_buQlenQOH51w8CF0SGBMC6rqYzPN8TIGyccKE4pwfoYhwnsaQcnmMIgAFsZAyPUVnIXwAAIMkidB8sdFtv1nhJ9-tne-3OHPat037huvO49n0eYFnrv_u_Ge4wS9t8-V80Ev8h702fetCwLk2783QztFJrZfBXRxyhIr7u2LyGGfzh-nkNouNYCSuFBF1DRq0UcJQZaESrNaVpjaVIAGopYZqQbi0tpLDLkViBXDGwBoNyQjR_a3xXQje1eXaNyvttyWBcmek_DVS7oyUByMDdLWHGufcP0AoSYEkP3K0XcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Khalid, Uman ; Rehman, Junaid ur ; Jung, Haejoon ; Duong, Trung Q. ; Dobre, Octavia A. ; Shin, Hyundong</creator><creatorcontrib>Khalid, Uman ; Rehman, Junaid ur ; Jung, Haejoon ; Duong, Trung Q. ; Dobre, Octavia A. ; Shin, Hyundong</creatorcontrib><description>The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3469555</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Certification ; Coherence ; Neural networks ; NISQ networks ; Quantum computing ; Quantum entanglement ; quantum property learning ; Quantum state ; quantum witness machines ; Reliability ; Tomography</subject><ispartof>IEEE transactions on communications, 2024-09, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1901-2784 ; 0000-0002-9089-1139 ; 0000-0002-2933-8609 ; 0000-0002-4703-4836 ; 0000-0001-8528-0512 ; 0000-0003-3364-8084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10697201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10697201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khalid, Uman</creatorcontrib><creatorcontrib>Rehman, Junaid ur</creatorcontrib><creatorcontrib>Jung, Haejoon</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Shin, Hyundong</creatorcontrib><title>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems.</description><subject>Accuracy</subject><subject>Certification</subject><subject>Coherence</subject><subject>Neural networks</subject><subject>NISQ networks</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>quantum property learning</subject><subject>Quantum state</subject><subject>quantum witness machines</subject><subject>Reliability</subject><subject>Tomography</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAYhYMoWKd_QLzIH-h8k-aj8U6GH4N2c1jxsqRJqtWtHUmn7N_buQlenQOH51w8CF0SGBMC6rqYzPN8TIGyccKE4pwfoYhwnsaQcnmMIgAFsZAyPUVnIXwAAIMkidB8sdFtv1nhJ9-tne-3OHPat037huvO49n0eYFnrv_u_Ge4wS9t8-V80Ev8h702fetCwLk2783QztFJrZfBXRxyhIr7u2LyGGfzh-nkNouNYCSuFBF1DRq0UcJQZaESrNaVpjaVIAGopYZqQbi0tpLDLkViBXDGwBoNyQjR_a3xXQje1eXaNyvttyWBcmek_DVS7oyUByMDdLWHGufcP0AoSYEkP3K0XcQ</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Khalid, Uman</creator><creator>Rehman, Junaid ur</creator><creator>Jung, Haejoon</creator><creator>Duong, Trung Q.</creator><creator>Dobre, Octavia A.</creator><creator>Shin, Hyundong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1901-2784</orcidid><orcidid>https://orcid.org/0000-0002-9089-1139</orcidid><orcidid>https://orcid.org/0000-0002-2933-8609</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-3364-8084</orcidid></search><sort><creationdate>20240926</creationdate><title>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</title><author>Khalid, Uman ; Rehman, Junaid ur ; Jung, Haejoon ; Duong, Trung Q. ; Dobre, Octavia A. ; Shin, Hyundong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641-b916ff0a0ac96c29d0b64faba2d8707002d2c2a6157ddb79d0763d605440dca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Certification</topic><topic>Coherence</topic><topic>Neural networks</topic><topic>NISQ networks</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>quantum property learning</topic><topic>Quantum state</topic><topic>quantum witness machines</topic><topic>Reliability</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Uman</creatorcontrib><creatorcontrib>Rehman, Junaid ur</creatorcontrib><creatorcontrib>Jung, Haejoon</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Shin, Hyundong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khalid, Uman</au><au>Rehman, Junaid ur</au><au>Jung, Haejoon</au><au>Duong, Trung Q.</au><au>Dobre, Octavia A.</au><au>Shin, Hyundong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-09-26</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3469555</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1901-2784</orcidid><orcidid>https://orcid.org/0000-0002-9089-1139</orcidid><orcidid>https://orcid.org/0000-0002-2933-8609</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-3364-8084</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2024-09, p.1-1
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2024_3469555
source IEEE Electronic Library (IEL)
subjects Accuracy
Certification
Coherence
Neural networks
NISQ networks
Quantum computing
Quantum entanglement
quantum property learning
Quantum state
quantum witness machines
Reliability
Tomography
title Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Property%20Learning%20for%20NISQ%20Networks:%20Universal%20Quantum%20Witness%20Machines&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Khalid,%20Uman&rft.date=2024-09-26&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3469555&rft_dat=%3Ccrossref_RIE%3E10_1109_TCOMM_2024_3469555%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10697201&rfr_iscdi=true