Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines
The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2024-09, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on communications |
container_volume | |
creator | Khalid, Uman Rehman, Junaid ur Jung, Haejoon Duong, Trung Q. Dobre, Octavia A. Shin, Hyundong |
description | The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems. |
doi_str_mv | 10.1109/TCOMM.2024.3469555 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2024_3469555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10697201</ieee_id><sourcerecordid>10_1109_TCOMM_2024_3469555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641-b916ff0a0ac96c29d0b64faba2d8707002d2c2a6157ddb79d0763d605440dca03</originalsourceid><addsrcrecordid>eNpNkF1LwzAYhYMoWKd_QLzIH-h8k-aj8U6GH4N2c1jxsqRJqtWtHUmn7N_buQlenQOH51w8CF0SGBMC6rqYzPN8TIGyccKE4pwfoYhwnsaQcnmMIgAFsZAyPUVnIXwAAIMkidB8sdFtv1nhJ9-tne-3OHPat037huvO49n0eYFnrv_u_Ge4wS9t8-V80Ev8h702fetCwLk2783QztFJrZfBXRxyhIr7u2LyGGfzh-nkNouNYCSuFBF1DRq0UcJQZaESrNaVpjaVIAGopYZqQbi0tpLDLkViBXDGwBoNyQjR_a3xXQje1eXaNyvttyWBcmek_DVS7oyUByMDdLWHGufcP0AoSYEkP3K0XcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Khalid, Uman ; Rehman, Junaid ur ; Jung, Haejoon ; Duong, Trung Q. ; Dobre, Octavia A. ; Shin, Hyundong</creator><creatorcontrib>Khalid, Uman ; Rehman, Junaid ur ; Jung, Haejoon ; Duong, Trung Q. ; Dobre, Octavia A. ; Shin, Hyundong</creatorcontrib><description>The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2024.3469555</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Certification ; Coherence ; Neural networks ; NISQ networks ; Quantum computing ; Quantum entanglement ; quantum property learning ; Quantum state ; quantum witness machines ; Reliability ; Tomography</subject><ispartof>IEEE transactions on communications, 2024-09, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1901-2784 ; 0000-0002-9089-1139 ; 0000-0002-2933-8609 ; 0000-0002-4703-4836 ; 0000-0001-8528-0512 ; 0000-0003-3364-8084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10697201$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10697201$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khalid, Uman</creatorcontrib><creatorcontrib>Rehman, Junaid ur</creatorcontrib><creatorcontrib>Jung, Haejoon</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Shin, Hyundong</creatorcontrib><title>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems.</description><subject>Accuracy</subject><subject>Certification</subject><subject>Coherence</subject><subject>Neural networks</subject><subject>NISQ networks</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>quantum property learning</subject><subject>Quantum state</subject><subject>quantum witness machines</subject><subject>Reliability</subject><subject>Tomography</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAYhYMoWKd_QLzIH-h8k-aj8U6GH4N2c1jxsqRJqtWtHUmn7N_buQlenQOH51w8CF0SGBMC6rqYzPN8TIGyccKE4pwfoYhwnsaQcnmMIgAFsZAyPUVnIXwAAIMkidB8sdFtv1nhJ9-tne-3OHPat037huvO49n0eYFnrv_u_Ge4wS9t8-V80Ev8h702fetCwLk2783QztFJrZfBXRxyhIr7u2LyGGfzh-nkNouNYCSuFBF1DRq0UcJQZaESrNaVpjaVIAGopYZqQbi0tpLDLkViBXDGwBoNyQjR_a3xXQje1eXaNyvttyWBcmek_DVS7oyUByMDdLWHGufcP0AoSYEkP3K0XcQ</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Khalid, Uman</creator><creator>Rehman, Junaid ur</creator><creator>Jung, Haejoon</creator><creator>Duong, Trung Q.</creator><creator>Dobre, Octavia A.</creator><creator>Shin, Hyundong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1901-2784</orcidid><orcidid>https://orcid.org/0000-0002-9089-1139</orcidid><orcidid>https://orcid.org/0000-0002-2933-8609</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-3364-8084</orcidid></search><sort><creationdate>20240926</creationdate><title>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</title><author>Khalid, Uman ; Rehman, Junaid ur ; Jung, Haejoon ; Duong, Trung Q. ; Dobre, Octavia A. ; Shin, Hyundong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641-b916ff0a0ac96c29d0b64faba2d8707002d2c2a6157ddb79d0763d605440dca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Certification</topic><topic>Coherence</topic><topic>Neural networks</topic><topic>NISQ networks</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>quantum property learning</topic><topic>Quantum state</topic><topic>quantum witness machines</topic><topic>Reliability</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalid, Uman</creatorcontrib><creatorcontrib>Rehman, Junaid ur</creatorcontrib><creatorcontrib>Jung, Haejoon</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><creatorcontrib>Shin, Hyundong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khalid, Uman</au><au>Rehman, Junaid ur</au><au>Jung, Haejoon</au><au>Duong, Trung Q.</au><au>Dobre, Octavia A.</au><au>Shin, Hyundong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-09-26</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>The learning of fundamental quantum properties-namely coherence, discord, and entanglement-benchmarks the security, computational, and metrological capability of noisy intermediate-scale quantum (NISQ) communication, computing, and sensing networks. The current learning techniques vary widely for these fundamental quantum properties, including standard tomographic procedures that involve exhaustive optimization. Fortunately, the fundamentally distinct quantum properties feature an intricate connection. In this paper, we put forth the concept of universal quantum witness machines (UQWMs) to develop a unified framework for quantum property learning (QPL) of a quantum system. We first formulate the certification and quantification of quantum properties based on quantum witnesses. The witness-based certification method is experimentally accessible and resource-efficient but lacks reliability and generality. To universalize the scope and circumvent the unreliability, we transform the certification task into a classification task by employing UQWMs with classical machine learning to construct quantum property classifiers. This formalism offers a unifying perspective on the certification, quantification, and classification of these enigmatically linked fundamental quantum properties. To demonstrate our UQWM approach, we provide a comparative numerical analysis of quantum property quantification with quantum witnesses and classification performance analysis of quantum property classification with convolutional neural networks, specifically for 4 × 4 quantum systems.</abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3469555</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1901-2784</orcidid><orcidid>https://orcid.org/0000-0002-9089-1139</orcidid><orcidid>https://orcid.org/0000-0002-2933-8609</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-3364-8084</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2024-09, p.1-1 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2024_3469555 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Certification Coherence Neural networks NISQ networks Quantum computing Quantum entanglement quantum property learning Quantum state quantum witness machines Reliability Tomography |
title | Quantum Property Learning for NISQ Networks: Universal Quantum Witness Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Property%20Learning%20for%20NISQ%20Networks:%20Universal%20Quantum%20Witness%20Machines&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Khalid,%20Uman&rft.date=2024-09-26&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3469555&rft_dat=%3Ccrossref_RIE%3E10_1109_TCOMM_2024_3469555%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10697201&rfr_iscdi=true |