Capacity-achieving Polar-based Codes with Sparsity Constraints on the Generator Matrices

In general, the generator matrix sparsity is a critical factor in determining the encoding complexity of a linear code. Further, certain applications, e.g., distributed crowdsourcing schemes utilizing linear codes, require most or even all the columns of the generator matrix to have some degree of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2023-09, Vol.71 (9), p.1-1
Hauptverfasser: Pang, James Chin-Jen, Mahdavifar, Hessam, Sandeep Pradhan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 9
container_start_page 1
container_title IEEE transactions on communications
container_volume 71
creator Pang, James Chin-Jen
Mahdavifar, Hessam
Sandeep Pradhan, S.
description In general, the generator matrix sparsity is a critical factor in determining the encoding complexity of a linear code. Further, certain applications, e.g., distributed crowdsourcing schemes utilizing linear codes, require most or even all the columns of the generator matrix to have some degree of sparsity. In this paper, we leverage polar codes and the well-established channel polarization to design capacity-achieving codes with a certain constraint on the weights of all the columns in the generator matrix (GM) while having a low-complexity decoding algorithm. We first show that given a binary-input memoryless symmetric (BMS) channel W and a constant s ∈ (0, 1], there exists a polarization kernel such that the corresponding polar code is capacity-achieving with the rate of polarization s /2, and the GM column weights being bounded from above by N s . To improve the sparsity versus error rate trade-off, we devise a column-splitting algorithm and two coding schemes for BEC and then for general BMS channels. The polar-based codes generated by the two schemes inherit several fundamental properties of polar codes with the original 2 × 2 kernel including the decay in error probability, decoding complexity, and the capacity-achieving property. Furthermore, they demonstrate the additional property that their GM column weights are bounded from above sublinearly in N , while the original polar codes have some column weights that are linear in N . In particular, for any BEC and β < 0.5, the existence of a sequence of capacity-achieving polar-based codes where all the GM column weights are bounded from above by N λ with λ ≈ 0.585, and with the error probability bounded by O (2 - N β ) under a decoder with complexity O ( N log N ), is shown. The existence of similar capacity-achieving polar-based codes with the same decoding complexity is shown for any BMS channel and β < 0.5 with λ ≈ 0.631.
doi_str_mv 10.1109/TCOMM.2023.3282603
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2023_3282603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10144071</ieee_id><sourcerecordid>2865090507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-83e47c1fb59ef21d16fc5c531751a82e90a625d37b39e7fe5ec91c36a2d1a65b3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOKcvIF4EvO48SZqmvZSiU9iY4ATvQpqeuozZ1iRT9vZ2bhdeHTj83384HyHXDCaMQXG3LBfz-YQDFxPBc56BOCEjJmWeQC7VKRkBFJBkSuXn5CKENQCkIMSIvJemN9bFXWLsyuG3az_oS7cxPqlMwJqWXY2B_ri4oq-98WFIDrs2RG9cGwPtWhpXSKfYojex83RuoncWwyU5a8wm4NVxjsnb48OyfEpmi-lzeT9LLE9VTHKBqbKsqWSBDWc1yxorrRRMSWZyjgWYjMtaqEoUqBqUaAtmRWZ4zUwmKzEmt4fe3ndfWwxRr7utb4eTmueZHN6WoIYUP6Ss70Lw2Ojeu0_jd5qB3hvUfwb13qA-GhygmwPkEPEfwNIUFBO_okdtdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865090507</pqid></control><display><type>article</type><title>Capacity-achieving Polar-based Codes with Sparsity Constraints on the Generator Matrices</title><source>IEEE Electronic Library (IEL)</source><creator>Pang, James Chin-Jen ; Mahdavifar, Hessam ; Sandeep Pradhan, S.</creator><creatorcontrib>Pang, James Chin-Jen ; Mahdavifar, Hessam ; Sandeep Pradhan, S.</creatorcontrib><description>In general, the generator matrix sparsity is a critical factor in determining the encoding complexity of a linear code. Further, certain applications, e.g., distributed crowdsourcing schemes utilizing linear codes, require most or even all the columns of the generator matrix to have some degree of sparsity. In this paper, we leverage polar codes and the well-established channel polarization to design capacity-achieving codes with a certain constraint on the weights of all the columns in the generator matrix (GM) while having a low-complexity decoding algorithm. We first show that given a binary-input memoryless symmetric (BMS) channel W and a constant s ∈ (0, 1], there exists a polarization kernel such that the corresponding polar code is capacity-achieving with the rate of polarization s /2, and the GM column weights being bounded from above by N s . To improve the sparsity versus error rate trade-off, we devise a column-splitting algorithm and two coding schemes for BEC and then for general BMS channels. The polar-based codes generated by the two schemes inherit several fundamental properties of polar codes with the original 2 × 2 kernel including the decay in error probability, decoding complexity, and the capacity-achieving property. Furthermore, they demonstrate the additional property that their GM column weights are bounded from above sublinearly in N , while the original polar codes have some column weights that are linear in N . In particular, for any BEC and β &lt; 0.5, the existence of a sequence of capacity-achieving polar-based codes where all the GM column weights are bounded from above by N λ with λ ≈ 0.585, and with the error probability bounded by O (2 - N β ) under a decoder with complexity O ( N log N ), is shown. The existence of similar capacity-achieving polar-based codes with the same decoding complexity is shown for any BMS channel and β &lt; 0.5 with λ ≈ 0.631.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2023.3282603</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Codes ; Complexity ; Complexity theory ; Decoding ; Encoding ; Error correction codes ; Errors ; Generators ; Kernels ; Matrices (mathematics) ; Polar codes ; Polarization ; Sparse matrices ; Sparsity</subject><ispartof>IEEE transactions on communications, 2023-09, Vol.71 (9), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-83e47c1fb59ef21d16fc5c531751a82e90a625d37b39e7fe5ec91c36a2d1a65b3</cites><orcidid>0000-0001-9021-1992 ; 0000-0002-0735-8967 ; 0000-0001-8406-4404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10144071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10144071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pang, James Chin-Jen</creatorcontrib><creatorcontrib>Mahdavifar, Hessam</creatorcontrib><creatorcontrib>Sandeep Pradhan, S.</creatorcontrib><title>Capacity-achieving Polar-based Codes with Sparsity Constraints on the Generator Matrices</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>In general, the generator matrix sparsity is a critical factor in determining the encoding complexity of a linear code. Further, certain applications, e.g., distributed crowdsourcing schemes utilizing linear codes, require most or even all the columns of the generator matrix to have some degree of sparsity. In this paper, we leverage polar codes and the well-established channel polarization to design capacity-achieving codes with a certain constraint on the weights of all the columns in the generator matrix (GM) while having a low-complexity decoding algorithm. We first show that given a binary-input memoryless symmetric (BMS) channel W and a constant s ∈ (0, 1], there exists a polarization kernel such that the corresponding polar code is capacity-achieving with the rate of polarization s /2, and the GM column weights being bounded from above by N s . To improve the sparsity versus error rate trade-off, we devise a column-splitting algorithm and two coding schemes for BEC and then for general BMS channels. The polar-based codes generated by the two schemes inherit several fundamental properties of polar codes with the original 2 × 2 kernel including the decay in error probability, decoding complexity, and the capacity-achieving property. Furthermore, they demonstrate the additional property that their GM column weights are bounded from above sublinearly in N , while the original polar codes have some column weights that are linear in N . In particular, for any BEC and β &lt; 0.5, the existence of a sequence of capacity-achieving polar-based codes where all the GM column weights are bounded from above by N λ with λ ≈ 0.585, and with the error probability bounded by O (2 - N β ) under a decoder with complexity O ( N log N ), is shown. The existence of similar capacity-achieving polar-based codes with the same decoding complexity is shown for any BMS channel and β &lt; 0.5 with λ ≈ 0.631.</description><subject>Algorithms</subject><subject>Codes</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Decoding</subject><subject>Encoding</subject><subject>Error correction codes</subject><subject>Errors</subject><subject>Generators</subject><subject>Kernels</subject><subject>Matrices (mathematics)</subject><subject>Polar codes</subject><subject>Polarization</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAUhoMoOKcvIF4EvO48SZqmvZSiU9iY4ATvQpqeuozZ1iRT9vZ2bhdeHTj83384HyHXDCaMQXG3LBfz-YQDFxPBc56BOCEjJmWeQC7VKRkBFJBkSuXn5CKENQCkIMSIvJemN9bFXWLsyuG3az_oS7cxPqlMwJqWXY2B_ri4oq-98WFIDrs2RG9cGwPtWhpXSKfYojex83RuoncWwyU5a8wm4NVxjsnb48OyfEpmi-lzeT9LLE9VTHKBqbKsqWSBDWc1yxorrRRMSWZyjgWYjMtaqEoUqBqUaAtmRWZ4zUwmKzEmt4fe3ndfWwxRr7utb4eTmueZHN6WoIYUP6Ss70Lw2Ojeu0_jd5qB3hvUfwb13qA-GhygmwPkEPEfwNIUFBO_okdtdA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Pang, James Chin-Jen</creator><creator>Mahdavifar, Hessam</creator><creator>Sandeep Pradhan, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9021-1992</orcidid><orcidid>https://orcid.org/0000-0002-0735-8967</orcidid><orcidid>https://orcid.org/0000-0001-8406-4404</orcidid></search><sort><creationdate>20230901</creationdate><title>Capacity-achieving Polar-based Codes with Sparsity Constraints on the Generator Matrices</title><author>Pang, James Chin-Jen ; Mahdavifar, Hessam ; Sandeep Pradhan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-83e47c1fb59ef21d16fc5c531751a82e90a625d37b39e7fe5ec91c36a2d1a65b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Decoding</topic><topic>Encoding</topic><topic>Error correction codes</topic><topic>Errors</topic><topic>Generators</topic><topic>Kernels</topic><topic>Matrices (mathematics)</topic><topic>Polar codes</topic><topic>Polarization</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, James Chin-Jen</creatorcontrib><creatorcontrib>Mahdavifar, Hessam</creatorcontrib><creatorcontrib>Sandeep Pradhan, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pang, James Chin-Jen</au><au>Mahdavifar, Hessam</au><au>Sandeep Pradhan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capacity-achieving Polar-based Codes with Sparsity Constraints on the Generator Matrices</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>71</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>In general, the generator matrix sparsity is a critical factor in determining the encoding complexity of a linear code. Further, certain applications, e.g., distributed crowdsourcing schemes utilizing linear codes, require most or even all the columns of the generator matrix to have some degree of sparsity. In this paper, we leverage polar codes and the well-established channel polarization to design capacity-achieving codes with a certain constraint on the weights of all the columns in the generator matrix (GM) while having a low-complexity decoding algorithm. We first show that given a binary-input memoryless symmetric (BMS) channel W and a constant s ∈ (0, 1], there exists a polarization kernel such that the corresponding polar code is capacity-achieving with the rate of polarization s /2, and the GM column weights being bounded from above by N s . To improve the sparsity versus error rate trade-off, we devise a column-splitting algorithm and two coding schemes for BEC and then for general BMS channels. The polar-based codes generated by the two schemes inherit several fundamental properties of polar codes with the original 2 × 2 kernel including the decay in error probability, decoding complexity, and the capacity-achieving property. Furthermore, they demonstrate the additional property that their GM column weights are bounded from above sublinearly in N , while the original polar codes have some column weights that are linear in N . In particular, for any BEC and β &lt; 0.5, the existence of a sequence of capacity-achieving polar-based codes where all the GM column weights are bounded from above by N λ with λ ≈ 0.585, and with the error probability bounded by O (2 - N β ) under a decoder with complexity O ( N log N ), is shown. The existence of similar capacity-achieving polar-based codes with the same decoding complexity is shown for any BMS channel and β &lt; 0.5 with λ ≈ 0.631.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2023.3282603</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9021-1992</orcidid><orcidid>https://orcid.org/0000-0002-0735-8967</orcidid><orcidid>https://orcid.org/0000-0001-8406-4404</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2023-09, Vol.71 (9), p.1-1
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2023_3282603
source IEEE Electronic Library (IEL)
subjects Algorithms
Codes
Complexity
Complexity theory
Decoding
Encoding
Error correction codes
Errors
Generators
Kernels
Matrices (mathematics)
Polar codes
Polarization
Sparse matrices
Sparsity
title Capacity-achieving Polar-based Codes with Sparsity Constraints on the Generator Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capacity-achieving%20Polar-based%20Codes%20with%20Sparsity%20Constraints%20on%20the%20Generator%20Matrices&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Pang,%20James%20Chin-Jen&rft.date=2023-09-01&rft.volume=71&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2023.3282603&rft_dat=%3Cproquest_RIE%3E2865090507%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2865090507&rft_id=info:pmid/&rft_ieee_id=10144071&rfr_iscdi=true