A Training-Based Mutual Information Lower Bound for Large-Scale Systems
We provide a mutual information lower bound that can be used to analyze the effect of training in models with unknown parameters. For large-scale systems, we show that this bound can be calculated using the difference between two derivatives of a conditional entropy function. We provide a step-by-st...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2022-08, Vol.70 (8), p.5151-5163 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5163 |
---|---|
container_issue | 8 |
container_start_page | 5151 |
container_title | IEEE transactions on communications |
container_volume | 70 |
creator | Gao, Kang Meng, Xiangbo Laneman, J. Nicholas Chisum, Jonathan D. Bendlin, Ralf Chopra, Aditya Hochwald, Bertrand M. |
description | We provide a mutual information lower bound that can be used to analyze the effect of training in models with unknown parameters. For large-scale systems, we show that this bound can be calculated using the difference between two derivatives of a conditional entropy function. We provide a step-by-step process for computing the bound, and apply the steps to a quantized large-scale multiple-antenna wireless communication system with an unknown channel. Numerical results demonstrate the interplay between quantization and training. |
doi_str_mv | 10.1109/TCOMM.2022.3182747 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2022_3182747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9795071</ieee_id><sourcerecordid>2703134051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-447ae23c2eca15fdd223466be053614d98dd11d3670956c6d93a3e684aff691d3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A3rZxHNx9rt7BKJoAuEAnjdrd0pKoMXdNoZ_bxHiaZJ33mcmeQh5ZDBiDOzLerpcLEYcOB8JlnMjzRUZMKXyDHJlrskAwEKmjclvyV1KWwCQIMSAzMZ0HX1VV_Umm_iEgS66tvM7-lGXTdz7tmpqOm9-MNJJ09WB9imd-7jBbFX4HdLVMbW4T_fkpvS7hA-XOSSfb6_r6Xs2X84-puN5Vghh20xK45GLgmPhmSpD4FxIrb8QlNBMBpuHwFgQ2oBVutDBCi9Q59KXpbb9Ykiez3cPsfnuMLVu23Sx7l86bkAwIUGxvsXPrSI2KUUs3SFWex-PjoE7CXN_wtxJmLsI66GnM1Qh4j9gjVVgmPgFspZlvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703134051</pqid></control><display><type>article</type><title>A Training-Based Mutual Information Lower Bound for Large-Scale Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Kang ; Meng, Xiangbo ; Laneman, J. Nicholas ; Chisum, Jonathan D. ; Bendlin, Ralf ; Chopra, Aditya ; Hochwald, Bertrand M.</creator><creatorcontrib>Gao, Kang ; Meng, Xiangbo ; Laneman, J. Nicholas ; Chisum, Jonathan D. ; Bendlin, Ralf ; Chopra, Aditya ; Hochwald, Bertrand M.</creatorcontrib><description>We provide a mutual information lower bound that can be used to analyze the effect of training in models with unknown parameters. For large-scale systems, we show that this bound can be calculated using the difference between two derivatives of a conditional entropy function. We provide a step-by-step process for computing the bound, and apply the steps to a quantized large-scale multiple-antenna wireless communication system with an unknown channel. Numerical results demonstrate the interplay between quantization and training.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2022.3182747</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Coherence time ; Entropy ; Gaussian noise ; Information rates ; Large-scale systems ; Lower bounds ; Mutual information ; Training ; Wireless communication systems</subject><ispartof>IEEE transactions on communications, 2022-08, Vol.70 (8), p.5151-5163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-447ae23c2eca15fdd223466be053614d98dd11d3670956c6d93a3e684aff691d3</citedby><cites>FETCH-LOGICAL-c339t-447ae23c2eca15fdd223466be053614d98dd11d3670956c6d93a3e684aff691d3</cites><orcidid>0000-0003-0304-9742 ; 0000-0003-3396-1599 ; 0000-0002-6862-3349 ; 0000-0001-9178-782X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9795071$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9795071$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Kang</creatorcontrib><creatorcontrib>Meng, Xiangbo</creatorcontrib><creatorcontrib>Laneman, J. Nicholas</creatorcontrib><creatorcontrib>Chisum, Jonathan D.</creatorcontrib><creatorcontrib>Bendlin, Ralf</creatorcontrib><creatorcontrib>Chopra, Aditya</creatorcontrib><creatorcontrib>Hochwald, Bertrand M.</creatorcontrib><title>A Training-Based Mutual Information Lower Bound for Large-Scale Systems</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We provide a mutual information lower bound that can be used to analyze the effect of training in models with unknown parameters. For large-scale systems, we show that this bound can be calculated using the difference between two derivatives of a conditional entropy function. We provide a step-by-step process for computing the bound, and apply the steps to a quantized large-scale multiple-antenna wireless communication system with an unknown channel. Numerical results demonstrate the interplay between quantization and training.</description><subject>Analytical models</subject><subject>Coherence time</subject><subject>Entropy</subject><subject>Gaussian noise</subject><subject>Information rates</subject><subject>Large-scale systems</subject><subject>Lower bounds</subject><subject>Mutual information</subject><subject>Training</subject><subject>Wireless communication systems</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9A3rZxHNx9rt7BKJoAuEAnjdrd0pKoMXdNoZ_bxHiaZJ33mcmeQh5ZDBiDOzLerpcLEYcOB8JlnMjzRUZMKXyDHJlrskAwEKmjclvyV1KWwCQIMSAzMZ0HX1VV_Umm_iEgS66tvM7-lGXTdz7tmpqOm9-MNJJ09WB9imd-7jBbFX4HdLVMbW4T_fkpvS7hA-XOSSfb6_r6Xs2X84-puN5Vghh20xK45GLgmPhmSpD4FxIrb8QlNBMBpuHwFgQ2oBVutDBCi9Q59KXpbb9Ykiez3cPsfnuMLVu23Sx7l86bkAwIUGxvsXPrSI2KUUs3SFWex-PjoE7CXN_wtxJmLsI66GnM1Qh4j9gjVVgmPgFspZlvQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Gao, Kang</creator><creator>Meng, Xiangbo</creator><creator>Laneman, J. Nicholas</creator><creator>Chisum, Jonathan D.</creator><creator>Bendlin, Ralf</creator><creator>Chopra, Aditya</creator><creator>Hochwald, Bertrand M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0304-9742</orcidid><orcidid>https://orcid.org/0000-0003-3396-1599</orcidid><orcidid>https://orcid.org/0000-0002-6862-3349</orcidid><orcidid>https://orcid.org/0000-0001-9178-782X</orcidid></search><sort><creationdate>20220801</creationdate><title>A Training-Based Mutual Information Lower Bound for Large-Scale Systems</title><author>Gao, Kang ; Meng, Xiangbo ; Laneman, J. Nicholas ; Chisum, Jonathan D. ; Bendlin, Ralf ; Chopra, Aditya ; Hochwald, Bertrand M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-447ae23c2eca15fdd223466be053614d98dd11d3670956c6d93a3e684aff691d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Coherence time</topic><topic>Entropy</topic><topic>Gaussian noise</topic><topic>Information rates</topic><topic>Large-scale systems</topic><topic>Lower bounds</topic><topic>Mutual information</topic><topic>Training</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Kang</creatorcontrib><creatorcontrib>Meng, Xiangbo</creatorcontrib><creatorcontrib>Laneman, J. Nicholas</creatorcontrib><creatorcontrib>Chisum, Jonathan D.</creatorcontrib><creatorcontrib>Bendlin, Ralf</creatorcontrib><creatorcontrib>Chopra, Aditya</creatorcontrib><creatorcontrib>Hochwald, Bertrand M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Kang</au><au>Meng, Xiangbo</au><au>Laneman, J. Nicholas</au><au>Chisum, Jonathan D.</au><au>Bendlin, Ralf</au><au>Chopra, Aditya</au><au>Hochwald, Bertrand M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Training-Based Mutual Information Lower Bound for Large-Scale Systems</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>70</volume><issue>8</issue><spage>5151</spage><epage>5163</epage><pages>5151-5163</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We provide a mutual information lower bound that can be used to analyze the effect of training in models with unknown parameters. For large-scale systems, we show that this bound can be calculated using the difference between two derivatives of a conditional entropy function. We provide a step-by-step process for computing the bound, and apply the steps to a quantized large-scale multiple-antenna wireless communication system with an unknown channel. Numerical results demonstrate the interplay between quantization and training.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2022.3182747</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0304-9742</orcidid><orcidid>https://orcid.org/0000-0003-3396-1599</orcidid><orcidid>https://orcid.org/0000-0002-6862-3349</orcidid><orcidid>https://orcid.org/0000-0001-9178-782X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2022-08, Vol.70 (8), p.5151-5163 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2022_3182747 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Coherence time Entropy Gaussian noise Information rates Large-scale systems Lower bounds Mutual information Training Wireless communication systems |
title | A Training-Based Mutual Information Lower Bound for Large-Scale Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Training-Based%20Mutual%20Information%20Lower%20Bound%20for%20Large-Scale%20Systems&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Gao,%20Kang&rft.date=2022-08-01&rft.volume=70&rft.issue=8&rft.spage=5151&rft.epage=5163&rft.pages=5151-5163&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2022.3182747&rft_dat=%3Cproquest_RIE%3E2703134051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2703134051&rft_id=info:pmid/&rft_ieee_id=9795071&rfr_iscdi=true |