Group-Based Random Access and Data Transmission Scheme for Massive MTC Networks
Massive machine-type communications (mMTC) is one of the three generic services for the fifth-generation (5G) wireless communications system. To utilize fully the high rate transmission feature of the 5G system to support massive MTC devices (MTCDs), we propose a group-based random access and data t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2021-12, Vol.69 (12), p.8287-8303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8303 |
---|---|
container_issue | 12 |
container_start_page | 8287 |
container_title | IEEE transactions on communications |
container_volume | 69 |
creator | Wang, Tao Wang, Yichen Wang, Chunfeng Yang, Zihuan Cheng, Julian |
description | Massive machine-type communications (mMTC) is one of the three generic services for the fifth-generation (5G) wireless communications system. To utilize fully the high rate transmission feature of the 5G system to support massive MTC devices (MTCDs), we propose a group-based random access and data transmission scheme, where the data packets of MTCDs are first aggregated by the MTC gateways (MTCGs) and then forwarded to the base station. The access process of the MTC network is divided into two phases, namely the intra-group transmission phase and MTCG forwarding phase. The entire resources are also partitioned for the two phases. We employ the discrete-time nonhomogenous Markov model to characterize the joint queue-length evolution of multiple MTCGs, which cannot be analyzed directly due to the exponential complexity and time-nonhomogeneity. To facilitate the analysis, we approximately decompose the joint nonhomogenous queue-length evolution process into multiple independent nonhomogenous queue-length evolution processes with the same state transition probabilities. Then, we establish an equivalent single queue-length evolution based homogenous Markov chain by constructing a virtual queue and determine the corresponding stationary distribution by using the Gauss-Jordan elimination method. An optimization problem is formulated to maximize the average network throughput subject to the constraints on the resource partition for the two phases and the MTCG forwarding threshold. By developing a modified differential evolution algorithm, we provide an efficient solution to the formulated problem, which can be arbitrarily close to the optimal solution. Simulation results show that the proposed scheme can efficiently improve the network performance over the existing schemes. |
doi_str_mv | 10.1109/TCOMM.2021.3111609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2021_3111609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9535118</ieee_id><sourcerecordid>2610982660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7d81a57083c68161cdb54c91dce7e0a2582f1a20a8fd3183683dc22134fece153</originalsourceid><addsrcrecordid>eNo9kMFOwzAMhiMEEmPwAnCJxLnDTpY0PY4CA2llEpRzFNJUdNBmJB2It6djEyfL1v_Z1kfIOcIEEbKrMl8WxYQBwwlHRAnZARmhECoBJdJDMgLIIJFpqo7JSYwrAJgC5yOynAe_WSfXJrqKPpmu8i2dWetipENDb0xvaBlMF9smxsZ39Nm-udbR2gdamGH05WhR5vTR9d8-vMdTclSbj-jO9nVMXu5uy_w-WSznD_lskViWiT5JK4VGpKC4lQol2upVTG2GlXWpA8OEYjUaBkbVFUfFpeKVZQz5tHbWoeBjcrnbuw7-c-Nir1d-E7rhpGZyMKKYlDCk2C5lg48xuFqvQ9Oa8KMR9Fac_hOnt-L0XtwAXeygxjn3D2SCCxw--QU2ZWhV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610982660</pqid></control><display><type>article</type><title>Group-Based Random Access and Data Transmission Scheme for Massive MTC Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Tao ; Wang, Yichen ; Wang, Chunfeng ; Yang, Zihuan ; Cheng, Julian</creator><creatorcontrib>Wang, Tao ; Wang, Yichen ; Wang, Chunfeng ; Yang, Zihuan ; Cheng, Julian</creatorcontrib><description>Massive machine-type communications (mMTC) is one of the three generic services for the fifth-generation (5G) wireless communications system. To utilize fully the high rate transmission feature of the 5G system to support massive MTC devices (MTCDs), we propose a group-based random access and data transmission scheme, where the data packets of MTCDs are first aggregated by the MTC gateways (MTCGs) and then forwarded to the base station. The access process of the MTC network is divided into two phases, namely the intra-group transmission phase and MTCG forwarding phase. The entire resources are also partitioned for the two phases. We employ the discrete-time nonhomogenous Markov model to characterize the joint queue-length evolution of multiple MTCGs, which cannot be analyzed directly due to the exponential complexity and time-nonhomogeneity. To facilitate the analysis, we approximately decompose the joint nonhomogenous queue-length evolution process into multiple independent nonhomogenous queue-length evolution processes with the same state transition probabilities. Then, we establish an equivalent single queue-length evolution based homogenous Markov chain by constructing a virtual queue and determine the corresponding stationary distribution by using the Gauss-Jordan elimination method. An optimization problem is formulated to maximize the average network throughput subject to the constraints on the resource partition for the two phases and the MTCG forwarding threshold. By developing a modified differential evolution algorithm, we provide an efficient solution to the formulated problem, which can be arbitrarily close to the optimal solution. Simulation results show that the proposed scheme can efficiently improve the network performance over the existing schemes.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3111609</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Analytical models ; Data communication ; Data transmission ; Evolutionary algorithms ; Evolutionary computation ; Gaussian elimination ; Markov chain ; Markov chains ; Markov processes ; Massive machine-type communication (MTC) ; Optimization ; Partitioning algorithms ; Phases ; Queueing analysis ; Queues ; Radio equipment ; Random access ; resource allocation ; Resource management ; Throughput ; throughput maximization ; Transition probabilities ; Wireless communication systems</subject><ispartof>IEEE transactions on communications, 2021-12, Vol.69 (12), p.8287-8303</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7d81a57083c68161cdb54c91dce7e0a2582f1a20a8fd3183683dc22134fece153</citedby><cites>FETCH-LOGICAL-c295t-7d81a57083c68161cdb54c91dce7e0a2582f1a20a8fd3183683dc22134fece153</cites><orcidid>0000-0003-4593-2605 ; 0000-0001-6310-8236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9535118$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9535118$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Wang, Chunfeng</creatorcontrib><creatorcontrib>Yang, Zihuan</creatorcontrib><creatorcontrib>Cheng, Julian</creatorcontrib><title>Group-Based Random Access and Data Transmission Scheme for Massive MTC Networks</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Massive machine-type communications (mMTC) is one of the three generic services for the fifth-generation (5G) wireless communications system. To utilize fully the high rate transmission feature of the 5G system to support massive MTC devices (MTCDs), we propose a group-based random access and data transmission scheme, where the data packets of MTCDs are first aggregated by the MTC gateways (MTCGs) and then forwarded to the base station. The access process of the MTC network is divided into two phases, namely the intra-group transmission phase and MTCG forwarding phase. The entire resources are also partitioned for the two phases. We employ the discrete-time nonhomogenous Markov model to characterize the joint queue-length evolution of multiple MTCGs, which cannot be analyzed directly due to the exponential complexity and time-nonhomogeneity. To facilitate the analysis, we approximately decompose the joint nonhomogenous queue-length evolution process into multiple independent nonhomogenous queue-length evolution processes with the same state transition probabilities. Then, we establish an equivalent single queue-length evolution based homogenous Markov chain by constructing a virtual queue and determine the corresponding stationary distribution by using the Gauss-Jordan elimination method. An optimization problem is formulated to maximize the average network throughput subject to the constraints on the resource partition for the two phases and the MTCG forwarding threshold. By developing a modified differential evolution algorithm, we provide an efficient solution to the formulated problem, which can be arbitrarily close to the optimal solution. Simulation results show that the proposed scheme can efficiently improve the network performance over the existing schemes.</description><subject>5G mobile communication</subject><subject>Analytical models</subject><subject>Data communication</subject><subject>Data transmission</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Gaussian elimination</subject><subject>Markov chain</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Massive machine-type communication (MTC)</subject><subject>Optimization</subject><subject>Partitioning algorithms</subject><subject>Phases</subject><subject>Queueing analysis</subject><subject>Queues</subject><subject>Radio equipment</subject><subject>Random access</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Throughput</subject><subject>throughput maximization</subject><subject>Transition probabilities</subject><subject>Wireless communication systems</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAMhiMEEmPwAnCJxLnDTpY0PY4CA2llEpRzFNJUdNBmJB2It6djEyfL1v_Z1kfIOcIEEbKrMl8WxYQBwwlHRAnZARmhECoBJdJDMgLIIJFpqo7JSYwrAJgC5yOynAe_WSfXJrqKPpmu8i2dWetipENDb0xvaBlMF9smxsZ39Nm-udbR2gdamGH05WhR5vTR9d8-vMdTclSbj-jO9nVMXu5uy_w-WSznD_lskViWiT5JK4VGpKC4lQol2upVTG2GlXWpA8OEYjUaBkbVFUfFpeKVZQz5tHbWoeBjcrnbuw7-c-Nir1d-E7rhpGZyMKKYlDCk2C5lg48xuFqvQ9Oa8KMR9Fac_hOnt-L0XtwAXeygxjn3D2SCCxw--QU2ZWhV</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Tao</creator><creator>Wang, Yichen</creator><creator>Wang, Chunfeng</creator><creator>Yang, Zihuan</creator><creator>Cheng, Julian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4593-2605</orcidid><orcidid>https://orcid.org/0000-0001-6310-8236</orcidid></search><sort><creationdate>20211201</creationdate><title>Group-Based Random Access and Data Transmission Scheme for Massive MTC Networks</title><author>Wang, Tao ; Wang, Yichen ; Wang, Chunfeng ; Yang, Zihuan ; Cheng, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7d81a57083c68161cdb54c91dce7e0a2582f1a20a8fd3183683dc22134fece153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5G mobile communication</topic><topic>Analytical models</topic><topic>Data communication</topic><topic>Data transmission</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Gaussian elimination</topic><topic>Markov chain</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Massive machine-type communication (MTC)</topic><topic>Optimization</topic><topic>Partitioning algorithms</topic><topic>Phases</topic><topic>Queueing analysis</topic><topic>Queues</topic><topic>Radio equipment</topic><topic>Random access</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Throughput</topic><topic>throughput maximization</topic><topic>Transition probabilities</topic><topic>Wireless communication systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wang, Yichen</creatorcontrib><creatorcontrib>Wang, Chunfeng</creatorcontrib><creatorcontrib>Yang, Zihuan</creatorcontrib><creatorcontrib>Cheng, Julian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Tao</au><au>Wang, Yichen</au><au>Wang, Chunfeng</au><au>Yang, Zihuan</au><au>Cheng, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group-Based Random Access and Data Transmission Scheme for Massive MTC Networks</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>69</volume><issue>12</issue><spage>8287</spage><epage>8303</epage><pages>8287-8303</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Massive machine-type communications (mMTC) is one of the three generic services for the fifth-generation (5G) wireless communications system. To utilize fully the high rate transmission feature of the 5G system to support massive MTC devices (MTCDs), we propose a group-based random access and data transmission scheme, where the data packets of MTCDs are first aggregated by the MTC gateways (MTCGs) and then forwarded to the base station. The access process of the MTC network is divided into two phases, namely the intra-group transmission phase and MTCG forwarding phase. The entire resources are also partitioned for the two phases. We employ the discrete-time nonhomogenous Markov model to characterize the joint queue-length evolution of multiple MTCGs, which cannot be analyzed directly due to the exponential complexity and time-nonhomogeneity. To facilitate the analysis, we approximately decompose the joint nonhomogenous queue-length evolution process into multiple independent nonhomogenous queue-length evolution processes with the same state transition probabilities. Then, we establish an equivalent single queue-length evolution based homogenous Markov chain by constructing a virtual queue and determine the corresponding stationary distribution by using the Gauss-Jordan elimination method. An optimization problem is formulated to maximize the average network throughput subject to the constraints on the resource partition for the two phases and the MTCG forwarding threshold. By developing a modified differential evolution algorithm, we provide an efficient solution to the formulated problem, which can be arbitrarily close to the optimal solution. Simulation results show that the proposed scheme can efficiently improve the network performance over the existing schemes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3111609</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4593-2605</orcidid><orcidid>https://orcid.org/0000-0001-6310-8236</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2021-12, Vol.69 (12), p.8287-8303 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2021_3111609 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Analytical models Data communication Data transmission Evolutionary algorithms Evolutionary computation Gaussian elimination Markov chain Markov chains Markov processes Massive machine-type communication (MTC) Optimization Partitioning algorithms Phases Queueing analysis Queues Radio equipment Random access resource allocation Resource management Throughput throughput maximization Transition probabilities Wireless communication systems |
title | Group-Based Random Access and Data Transmission Scheme for Massive MTC Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group-Based%20Random%20Access%20and%20Data%20Transmission%20Scheme%20for%20Massive%20MTC%20Networks&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Wang,%20Tao&rft.date=2021-12-01&rft.volume=69&rft.issue=12&rft.spage=8287&rft.epage=8303&rft.pages=8287-8303&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3111609&rft_dat=%3Cproquest_RIE%3E2610982660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610982660&rft_id=info:pmid/&rft_ieee_id=9535118&rfr_iscdi=true |