Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference
In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary tr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2021-12, Vol.69 (12), p.8159-8174 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8174 |
---|---|
container_issue | 12 |
container_start_page | 8159 |
container_title | IEEE transactions on communications |
container_volume | 69 |
creator | Vu, Thai-Hoc Nguyen, Toan-Van da Costa, Daniel Benevides Kim, Sunghwan |
description | In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation. |
doi_str_mv | 10.1109/TCOMM.2021.3110209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2021_3110209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9529215</ieee_id><sourcerecordid>2610982794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjziJlyXlEakPBEEsIyeZtCmpU-wU1G_gp3EfYjWamXvnag5C15QMKCXyLo1nk8mAEUYH3A0YkSeoR4WIPBKJ8BT1CJHEC8IwOkcX1i4JIT7hvId-X8BUrVkpXQAeatVsbW2x0iUeAazxGJTRtZ67ztZzjdsKv-sSTKO2OG7nuu7qb8DT2WTo3SsLJY5HrymeQvfTmk-LP-pugZPV2mVA0eG3JN6fjlsvXiitocGJ7nZLAy7_Ep1VqrFwdax9lD4-pPGzN549JfFw7BVMis4LSBlIybjMKz_PC5bzkEJOfRIVjPFK5CooKk6BhyKgNKdKKBqqKghzZ5OS99Ht4ezatF8bsF22bDfGvW4zFjiYEQul71TsoCpMa62BKlubeqXMNqMk2zHP9syzHfPsyNyZbg6mGgD-DVIwyajgf3NffRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610982794</pqid></control><display><type>article</type><title>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</title><source>IEEE Electronic Library (IEL)</source><creator>Vu, Thai-Hoc ; Nguyen, Toan-Van ; da Costa, Daniel Benevides ; Kim, Sunghwan</creator><creatorcontrib>Vu, Thai-Hoc ; Nguyen, Toan-Van ; da Costa, Daniel Benevides ; Kim, Sunghwan</creatorcontrib><description>In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3110209</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cochannel interference ; cognitive radio (CR) ; Configuration management ; Coordinated direct and relay transmission (CDRT) ; Deep learning ; Infinity ; Interchannel interference ; Machine learning ; NOMA ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; outage probability (OP) ; Predictions ; Relay ; relay selection ; Relays ; Resource management ; Silicon carbide ; system throughput ; Throughput</subject><ispartof>IEEE transactions on communications, 2021-12, Vol.69 (12), p.8159-8174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</citedby><cites>FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</cites><orcidid>0000-0002-5559-6695 ; 0000-0003-1762-5915 ; 0000-0002-5439-7475 ; 0000-0002-1968-8170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9529215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9529215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vu, Thai-Hoc</creatorcontrib><creatorcontrib>Nguyen, Toan-Van</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Kim, Sunghwan</creatorcontrib><title>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation.</description><subject>Artificial neural networks</subject><subject>Cochannel interference</subject><subject>cognitive radio (CR)</subject><subject>Configuration management</subject><subject>Coordinated direct and relay transmission (CDRT)</subject><subject>Deep learning</subject><subject>Infinity</subject><subject>Interchannel interference</subject><subject>Machine learning</subject><subject>NOMA</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>outage probability (OP)</subject><subject>Predictions</subject><subject>Relay</subject><subject>relay selection</subject><subject>Relays</subject><subject>Resource management</subject><subject>Silicon carbide</subject><subject>system throughput</subject><subject>Throughput</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjziJlyXlEakPBEEsIyeZtCmpU-wU1G_gp3EfYjWamXvnag5C15QMKCXyLo1nk8mAEUYH3A0YkSeoR4WIPBKJ8BT1CJHEC8IwOkcX1i4JIT7hvId-X8BUrVkpXQAeatVsbW2x0iUeAazxGJTRtZ67ztZzjdsKv-sSTKO2OG7nuu7qb8DT2WTo3SsLJY5HrymeQvfTmk-LP-pugZPV2mVA0eG3JN6fjlsvXiitocGJ7nZLAy7_Ep1VqrFwdax9lD4-pPGzN549JfFw7BVMis4LSBlIybjMKz_PC5bzkEJOfRIVjPFK5CooKk6BhyKgNKdKKBqqKghzZ5OS99Ht4ezatF8bsF22bDfGvW4zFjiYEQul71TsoCpMa62BKlubeqXMNqMk2zHP9syzHfPsyNyZbg6mGgD-DVIwyajgf3NffRE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Vu, Thai-Hoc</creator><creator>Nguyen, Toan-Van</creator><creator>da Costa, Daniel Benevides</creator><creator>Kim, Sunghwan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5559-6695</orcidid><orcidid>https://orcid.org/0000-0003-1762-5915</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0002-1968-8170</orcidid></search><sort><creationdate>20211201</creationdate><title>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</title><author>Vu, Thai-Hoc ; Nguyen, Toan-Van ; da Costa, Daniel Benevides ; Kim, Sunghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Cochannel interference</topic><topic>cognitive radio (CR)</topic><topic>Configuration management</topic><topic>Coordinated direct and relay transmission (CDRT)</topic><topic>Deep learning</topic><topic>Infinity</topic><topic>Interchannel interference</topic><topic>Machine learning</topic><topic>NOMA</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>outage probability (OP)</topic><topic>Predictions</topic><topic>Relay</topic><topic>relay selection</topic><topic>Relays</topic><topic>Resource management</topic><topic>Silicon carbide</topic><topic>system throughput</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Thai-Hoc</creatorcontrib><creatorcontrib>Nguyen, Toan-Van</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Kim, Sunghwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vu, Thai-Hoc</au><au>Nguyen, Toan-Van</au><au>da Costa, Daniel Benevides</au><au>Kim, Sunghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>69</volume><issue>12</issue><spage>8159</spage><epage>8174</epage><pages>8159-8174</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3110209</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5559-6695</orcidid><orcidid>https://orcid.org/0000-0003-1762-5915</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0002-1968-8170</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2021-12, Vol.69 (12), p.8159-8174 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2021_3110209 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Cochannel interference cognitive radio (CR) Configuration management Coordinated direct and relay transmission (CDRT) Deep learning Infinity Interchannel interference Machine learning NOMA non-orthogonal multiple access (NOMA) Nonorthogonal multiple access outage probability (OP) Predictions Relay relay selection Relays Resource management Silicon carbide system throughput Throughput |
title | Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Deep%20Learning%20Design%20of%20Underlay%20Cognitive%20NOMA-Based%20CDRT%20Networks%20With%20Imperfect%20SIC%20and%20Co-Channel%20Interference&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Vu,%20Thai-Hoc&rft.date=2021-12-01&rft.volume=69&rft.issue=12&rft.spage=8159&rft.epage=8174&rft.pages=8159-8174&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3110209&rft_dat=%3Cproquest_RIE%3E2610982794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610982794&rft_id=info:pmid/&rft_ieee_id=9529215&rfr_iscdi=true |