Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference

In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2021-12, Vol.69 (12), p.8159-8174
Hauptverfasser: Vu, Thai-Hoc, Nguyen, Toan-Van, da Costa, Daniel Benevides, Kim, Sunghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8174
container_issue 12
container_start_page 8159
container_title IEEE transactions on communications
container_volume 69
creator Vu, Thai-Hoc
Nguyen, Toan-Van
da Costa, Daniel Benevides
Kim, Sunghwan
description In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation.
doi_str_mv 10.1109/TCOMM.2021.3110209
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2021_3110209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9529215</ieee_id><sourcerecordid>2610982794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjziJlyXlEakPBEEsIyeZtCmpU-wU1G_gp3EfYjWamXvnag5C15QMKCXyLo1nk8mAEUYH3A0YkSeoR4WIPBKJ8BT1CJHEC8IwOkcX1i4JIT7hvId-X8BUrVkpXQAeatVsbW2x0iUeAazxGJTRtZ67ztZzjdsKv-sSTKO2OG7nuu7qb8DT2WTo3SsLJY5HrymeQvfTmk-LP-pugZPV2mVA0eG3JN6fjlsvXiitocGJ7nZLAy7_Ep1VqrFwdax9lD4-pPGzN549JfFw7BVMis4LSBlIybjMKz_PC5bzkEJOfRIVjPFK5CooKk6BhyKgNKdKKBqqKghzZ5OS99Ht4ezatF8bsF22bDfGvW4zFjiYEQul71TsoCpMa62BKlubeqXMNqMk2zHP9syzHfPsyNyZbg6mGgD-DVIwyajgf3NffRE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610982794</pqid></control><display><type>article</type><title>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</title><source>IEEE Electronic Library (IEL)</source><creator>Vu, Thai-Hoc ; Nguyen, Toan-Van ; da Costa, Daniel Benevides ; Kim, Sunghwan</creator><creatorcontrib>Vu, Thai-Hoc ; Nguyen, Toan-Van ; da Costa, Daniel Benevides ; Kim, Sunghwan</creatorcontrib><description>In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2021.3110209</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cochannel interference ; cognitive radio (CR) ; Configuration management ; Coordinated direct and relay transmission (CDRT) ; Deep learning ; Infinity ; Interchannel interference ; Machine learning ; NOMA ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; outage probability (OP) ; Predictions ; Relay ; relay selection ; Relays ; Resource management ; Silicon carbide ; system throughput ; Throughput</subject><ispartof>IEEE transactions on communications, 2021-12, Vol.69 (12), p.8159-8174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</citedby><cites>FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</cites><orcidid>0000-0002-5559-6695 ; 0000-0003-1762-5915 ; 0000-0002-5439-7475 ; 0000-0002-1968-8170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9529215$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9529215$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vu, Thai-Hoc</creatorcontrib><creatorcontrib>Nguyen, Toan-Van</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Kim, Sunghwan</creatorcontrib><title>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation.</description><subject>Artificial neural networks</subject><subject>Cochannel interference</subject><subject>cognitive radio (CR)</subject><subject>Configuration management</subject><subject>Coordinated direct and relay transmission (CDRT)</subject><subject>Deep learning</subject><subject>Infinity</subject><subject>Interchannel interference</subject><subject>Machine learning</subject><subject>NOMA</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>outage probability (OP)</subject><subject>Predictions</subject><subject>Relay</subject><subject>relay selection</subject><subject>Relays</subject><subject>Resource management</subject><subject>Silicon carbide</subject><subject>system throughput</subject><subject>Throughput</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjziJlyXlEakPBEEsIyeZtCmpU-wU1G_gp3EfYjWamXvnag5C15QMKCXyLo1nk8mAEUYH3A0YkSeoR4WIPBKJ8BT1CJHEC8IwOkcX1i4JIT7hvId-X8BUrVkpXQAeatVsbW2x0iUeAazxGJTRtZ67ztZzjdsKv-sSTKO2OG7nuu7qb8DT2WTo3SsLJY5HrymeQvfTmk-LP-pugZPV2mVA0eG3JN6fjlsvXiitocGJ7nZLAy7_Ep1VqrFwdax9lD4-pPGzN549JfFw7BVMis4LSBlIybjMKz_PC5bzkEJOfRIVjPFK5CooKk6BhyKgNKdKKBqqKghzZ5OS99Ht4ezatF8bsF22bDfGvW4zFjiYEQul71TsoCpMa62BKlubeqXMNqMk2zHP9syzHfPsyNyZbg6mGgD-DVIwyajgf3NffRE</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Vu, Thai-Hoc</creator><creator>Nguyen, Toan-Van</creator><creator>da Costa, Daniel Benevides</creator><creator>Kim, Sunghwan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5559-6695</orcidid><orcidid>https://orcid.org/0000-0003-1762-5915</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0002-1968-8170</orcidid></search><sort><creationdate>20211201</creationdate><title>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</title><author>Vu, Thai-Hoc ; Nguyen, Toan-Van ; da Costa, Daniel Benevides ; Kim, Sunghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-60d699239bf4bbc2b371eb1408c223f5ba6cf31e375611b1a5a17af67b699993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Cochannel interference</topic><topic>cognitive radio (CR)</topic><topic>Configuration management</topic><topic>Coordinated direct and relay transmission (CDRT)</topic><topic>Deep learning</topic><topic>Infinity</topic><topic>Interchannel interference</topic><topic>Machine learning</topic><topic>NOMA</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>outage probability (OP)</topic><topic>Predictions</topic><topic>Relay</topic><topic>relay selection</topic><topic>Relays</topic><topic>Resource management</topic><topic>Silicon carbide</topic><topic>system throughput</topic><topic>Throughput</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Thai-Hoc</creatorcontrib><creatorcontrib>Nguyen, Toan-Van</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Kim, Sunghwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vu, Thai-Hoc</au><au>Nguyen, Toan-Van</au><au>da Costa, Daniel Benevides</au><au>Kim, Sunghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>69</volume><issue>12</issue><spage>8159</spage><epage>8174</epage><pages>8159-8174</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>In this paper, we investigate an underlay cognitive non-orthogonal multiple access (NOMA)-based coordinated direct and relay transmission network with imperfect successive interference cancellation, imperfect channel state information, and co-channel interference caused by a multi-antenna primary transmitter. In the secondary network, a source communicates with a near user via direct link and with a far user through the assistance of multiple relays subject to transmit power constraints. Four relay selection schemes are proposed to enhance the performance of NOMA users and the overall system throughput. In our analysis, exact closed-form expressions for the outage probability (OP) of NOMA users and for the overall system throughput are derived. To provide further insights, a performance floor analysis is carried out considering two power-setting scenarios: (i) the transmit powers at the secondary source and relays go to infinity and (ii) the peak interference constraint goes to infinity. Towards real-time configurations, we also design a deep learning (DL) framework for the OP and system throughput prediction. Our results show that the deep neural network exhibits the lowest run-time prediction and root-mean-square error among the proposed DL models. Furthermore, the predicted results based on DL framework match with those of the analysis and simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2021.3110209</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5559-6695</orcidid><orcidid>https://orcid.org/0000-0003-1762-5915</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><orcidid>https://orcid.org/0000-0002-1968-8170</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2021-12, Vol.69 (12), p.8159-8174
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2021_3110209
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Cochannel interference
cognitive radio (CR)
Configuration management
Coordinated direct and relay transmission (CDRT)
Deep learning
Infinity
Interchannel interference
Machine learning
NOMA
non-orthogonal multiple access (NOMA)
Nonorthogonal multiple access
outage probability (OP)
Predictions
Relay
relay selection
Relays
Resource management
Silicon carbide
system throughput
Throughput
title Performance Analysis and Deep Learning Design of Underlay Cognitive NOMA-Based CDRT Networks With Imperfect SIC and Co-Channel Interference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Deep%20Learning%20Design%20of%20Underlay%20Cognitive%20NOMA-Based%20CDRT%20Networks%20With%20Imperfect%20SIC%20and%20Co-Channel%20Interference&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Vu,%20Thai-Hoc&rft.date=2021-12-01&rft.volume=69&rft.issue=12&rft.spage=8159&rft.epage=8174&rft.pages=8159-8174&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2021.3110209&rft_dat=%3Cproquest_RIE%3E2610982794%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610982794&rft_id=info:pmid/&rft_ieee_id=9529215&rfr_iscdi=true