UAV-Enabled Communication Using NOMA

Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2019-07, Vol.67 (7), p.5126-5138
Hauptverfasser: Nasir, Ali Arshad, Tuan, Hoang Duong, Duong, Trung Q., Poor, H. Vincent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5138
container_issue 7
container_start_page 5126
container_title IEEE transactions on communications
container_volume 67
creator Nasir, Ali Arshad
Tuan, Hoang Duong
Duong, Trung Q.
Poor, H. Vincent
description Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization.
doi_str_mv 10.1109/TCOMM.2019.2906622
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2019_2906622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672190</ieee_id><sourcerecordid>2261885093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</originalsourceid><addsrcrecordid>eNo9kEtPhDAUhRujiTj6B3RDolvwtp2-lhMyPpJBNoPbBkprmAwwUlj47wWZuLp3cb5zkg-hewwxxqCe90mWpjEBrGKigHNCLlCAGZMRSCYuUQCgIOJCyGt04_0BANZAaYCe8s1ntG2L8mirMOmaZmxrUwx114a5r9uv8CNLN7foyhVHb-_Od4Xyl-0-eYt22et7stlFhlI1RJg4xzh1FXdMqrVRJSWCG0ENd6YqrRPKECZJVRacYCVFCQyMm18qucJ0hR6X3lPffY_WD_rQjX07TWpCOJaSgaJTiiwp03fe99bpU183Rf-jMejZhv6zoWcb-mxjgh4WqLbW_gOSi2kd6C-3_Fh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261885093</pqid></control><display><type>article</type><title>UAV-Enabled Communication Using NOMA</title><source>IEEE Electronic Library (IEL)</source><creator>Nasir, Ali Arshad ; Tuan, Hoang Duong ; Duong, Trung Q. ; Poor, H. Vincent</creator><creatorcontrib>Nasir, Ali Arshad ; Tuan, Hoang Duong ; Duong, Trung Q. ; Poor, H. Vincent</creatorcontrib><description>Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2019.2906622</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Altitude ; Antennas ; Bandwidth ; Bandwidths ; Communication ; Communications systems ; dirty paper coding (DPC) ; Line of sight communication ; NOMA ; non-convex optimization ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; Optimization ; orthogonal multiple access (OMA) ; Parameters ; Power management ; Resource management ; Throughput ; Unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communications</subject><ispartof>IEEE transactions on communications, 2019-07, Vol.67 (7), p.5126-5138</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</citedby><cites>FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</cites><orcidid>0000-0002-2062-131X ; 0000-0001-5012-1562 ; 0000-0002-4703-4836 ; 0000-0003-0292-6061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8672190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nasir, Ali Arshad</creatorcontrib><creatorcontrib>Tuan, Hoang Duong</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><title>UAV-Enabled Communication Using NOMA</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization.</description><subject>Algorithms</subject><subject>Altitude</subject><subject>Antennas</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Communication</subject><subject>Communications systems</subject><subject>dirty paper coding (DPC)</subject><subject>Line of sight communication</subject><subject>NOMA</subject><subject>non-convex optimization</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>orthogonal multiple access (OMA)</subject><subject>Parameters</subject><subject>Power management</subject><subject>Resource management</subject><subject>Throughput</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPhDAUhRujiTj6B3RDolvwtp2-lhMyPpJBNoPbBkprmAwwUlj47wWZuLp3cb5zkg-hewwxxqCe90mWpjEBrGKigHNCLlCAGZMRSCYuUQCgIOJCyGt04_0BANZAaYCe8s1ntG2L8mirMOmaZmxrUwx114a5r9uv8CNLN7foyhVHb-_Od4Xyl-0-eYt22et7stlFhlI1RJg4xzh1FXdMqrVRJSWCG0ENd6YqrRPKECZJVRacYCVFCQyMm18qucJ0hR6X3lPffY_WD_rQjX07TWpCOJaSgaJTiiwp03fe99bpU183Rf-jMejZhv6zoWcb-mxjgh4WqLbW_gOSi2kd6C-3_Fh8</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Nasir, Ali Arshad</creator><creator>Tuan, Hoang Duong</creator><creator>Duong, Trung Q.</creator><creator>Poor, H. Vincent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-5012-1562</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0003-0292-6061</orcidid></search><sort><creationdate>20190701</creationdate><title>UAV-Enabled Communication Using NOMA</title><author>Nasir, Ali Arshad ; Tuan, Hoang Duong ; Duong, Trung Q. ; Poor, H. Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Altitude</topic><topic>Antennas</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Communication</topic><topic>Communications systems</topic><topic>dirty paper coding (DPC)</topic><topic>Line of sight communication</topic><topic>NOMA</topic><topic>non-convex optimization</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>orthogonal multiple access (OMA)</topic><topic>Parameters</topic><topic>Power management</topic><topic>Resource management</topic><topic>Throughput</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasir, Ali Arshad</creatorcontrib><creatorcontrib>Tuan, Hoang Duong</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nasir, Ali Arshad</au><au>Tuan, Hoang Duong</au><au>Duong, Trung Q.</au><au>Poor, H. Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Enabled Communication Using NOMA</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>67</volume><issue>7</issue><spage>5126</spage><epage>5138</epage><pages>5126-5138</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2019.2906622</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-5012-1562</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0003-0292-6061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2019-07, Vol.67 (7), p.5126-5138
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2019_2906622
source IEEE Electronic Library (IEL)
subjects Algorithms
Altitude
Antennas
Bandwidth
Bandwidths
Communication
Communications systems
dirty paper coding (DPC)
Line of sight communication
NOMA
non-convex optimization
non-orthogonal multiple access (NOMA)
Nonorthogonal multiple access
Optimization
orthogonal multiple access (OMA)
Parameters
Power management
Resource management
Throughput
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Wireless communications
title UAV-Enabled Communication Using NOMA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Enabled%20Communication%20Using%20NOMA&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Nasir,%20Ali%20Arshad&rft.date=2019-07-01&rft.volume=67&rft.issue=7&rft.spage=5126&rft.epage=5138&rft.pages=5126-5138&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2019.2906622&rft_dat=%3Cproquest_RIE%3E2261885093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261885093&rft_id=info:pmid/&rft_ieee_id=8672190&rfr_iscdi=true