UAV-Enabled Communication Using NOMA
Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2019-07, Vol.67 (7), p.5126-5138 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5138 |
---|---|
container_issue | 7 |
container_start_page | 5126 |
container_title | IEEE transactions on communications |
container_volume | 67 |
creator | Nasir, Ali Arshad Tuan, Hoang Duong Duong, Trung Q. Poor, H. Vincent |
description | Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization. |
doi_str_mv | 10.1109/TCOMM.2019.2906622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2019_2906622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672190</ieee_id><sourcerecordid>2261885093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</originalsourceid><addsrcrecordid>eNo9kEtPhDAUhRujiTj6B3RDolvwtp2-lhMyPpJBNoPbBkprmAwwUlj47wWZuLp3cb5zkg-hewwxxqCe90mWpjEBrGKigHNCLlCAGZMRSCYuUQCgIOJCyGt04_0BANZAaYCe8s1ntG2L8mirMOmaZmxrUwx114a5r9uv8CNLN7foyhVHb-_Od4Xyl-0-eYt22et7stlFhlI1RJg4xzh1FXdMqrVRJSWCG0ENd6YqrRPKECZJVRacYCVFCQyMm18qucJ0hR6X3lPffY_WD_rQjX07TWpCOJaSgaJTiiwp03fe99bpU183Rf-jMejZhv6zoWcb-mxjgh4WqLbW_gOSi2kd6C-3_Fh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261885093</pqid></control><display><type>article</type><title>UAV-Enabled Communication Using NOMA</title><source>IEEE Electronic Library (IEL)</source><creator>Nasir, Ali Arshad ; Tuan, Hoang Duong ; Duong, Trung Q. ; Poor, H. Vincent</creator><creatorcontrib>Nasir, Ali Arshad ; Tuan, Hoang Duong ; Duong, Trung Q. ; Poor, H. Vincent</creatorcontrib><description>Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2019.2906622</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Altitude ; Antennas ; Bandwidth ; Bandwidths ; Communication ; Communications systems ; dirty paper coding (DPC) ; Line of sight communication ; NOMA ; non-convex optimization ; non-orthogonal multiple access (NOMA) ; Nonorthogonal multiple access ; Optimization ; orthogonal multiple access (OMA) ; Parameters ; Power management ; Resource management ; Throughput ; Unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communications</subject><ispartof>IEEE transactions on communications, 2019-07, Vol.67 (7), p.5126-5138</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</citedby><cites>FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</cites><orcidid>0000-0002-2062-131X ; 0000-0001-5012-1562 ; 0000-0002-4703-4836 ; 0000-0003-0292-6061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8672190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nasir, Ali Arshad</creatorcontrib><creatorcontrib>Tuan, Hoang Duong</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><title>UAV-Enabled Communication Using NOMA</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization.</description><subject>Algorithms</subject><subject>Altitude</subject><subject>Antennas</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Communication</subject><subject>Communications systems</subject><subject>dirty paper coding (DPC)</subject><subject>Line of sight communication</subject><subject>NOMA</subject><subject>non-convex optimization</subject><subject>non-orthogonal multiple access (NOMA)</subject><subject>Nonorthogonal multiple access</subject><subject>Optimization</subject><subject>orthogonal multiple access (OMA)</subject><subject>Parameters</subject><subject>Power management</subject><subject>Resource management</subject><subject>Throughput</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communications</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPhDAUhRujiTj6B3RDolvwtp2-lhMyPpJBNoPbBkprmAwwUlj47wWZuLp3cb5zkg-hewwxxqCe90mWpjEBrGKigHNCLlCAGZMRSCYuUQCgIOJCyGt04_0BANZAaYCe8s1ntG2L8mirMOmaZmxrUwx114a5r9uv8CNLN7foyhVHb-_Od4Xyl-0-eYt22et7stlFhlI1RJg4xzh1FXdMqrVRJSWCG0ENd6YqrRPKECZJVRacYCVFCQyMm18qucJ0hR6X3lPffY_WD_rQjX07TWpCOJaSgaJTiiwp03fe99bpU183Rf-jMejZhv6zoWcb-mxjgh4WqLbW_gOSi2kd6C-3_Fh8</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Nasir, Ali Arshad</creator><creator>Tuan, Hoang Duong</creator><creator>Duong, Trung Q.</creator><creator>Poor, H. Vincent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-5012-1562</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0003-0292-6061</orcidid></search><sort><creationdate>20190701</creationdate><title>UAV-Enabled Communication Using NOMA</title><author>Nasir, Ali Arshad ; Tuan, Hoang Duong ; Duong, Trung Q. ; Poor, H. Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-12ff563fd6f5894c9b3276c73c6fcdbef79c2582dba621987b050cf2198386913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Altitude</topic><topic>Antennas</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Communication</topic><topic>Communications systems</topic><topic>dirty paper coding (DPC)</topic><topic>Line of sight communication</topic><topic>NOMA</topic><topic>non-convex optimization</topic><topic>non-orthogonal multiple access (NOMA)</topic><topic>Nonorthogonal multiple access</topic><topic>Optimization</topic><topic>orthogonal multiple access (OMA)</topic><topic>Parameters</topic><topic>Power management</topic><topic>Resource management</topic><topic>Throughput</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasir, Ali Arshad</creatorcontrib><creatorcontrib>Tuan, Hoang Duong</creatorcontrib><creatorcontrib>Duong, Trung Q.</creatorcontrib><creatorcontrib>Poor, H. Vincent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nasir, Ali Arshad</au><au>Tuan, Hoang Duong</au><au>Duong, Trung Q.</au><au>Poor, H. Vincent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Enabled Communication Using NOMA</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>67</volume><issue>7</issue><spage>5126</spage><epage>5138</epage><pages>5126-5138</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>Unmanned aerial vehicles (UAVs) can be deployed as flying base stations (BSs) to leverage the strength of line-of-sight connections and effectively support the coverage and throughput of wireless communication. This paper considers a multiuser communication system, in which a single-antenna UAV-BS serves a large number of ground users by employing non-orthogonal multiple access (NOMA). The max-min rate optimization problem is formulated under total power, total bandwidth, UAV altitude, and antenna beamwidth constraints. The objective of max-min rate optimization is non-convex in all optimization variables, i.e., UAV altitude, transmit antenna beamwidth, power allocation, and bandwidth allocation for multiple users. A path-following algorithm is proposed to solve the formulated problem. Next, orthogonal multiple access (OMA) and dirty paper coding (DPC)-based max-min rate optimization problems are formulated and respective path-following algorithms are developed to solve them. The numerical results show that NOMA outperforms OMA and achieves rates similar to those attained by DPC. In addition, a clear rate gain is observed by jointly optimizing all the parameters rather than optimizing a subset of parameters, which confirms the desirability of their joint optimization.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2019.2906622</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-5012-1562</orcidid><orcidid>https://orcid.org/0000-0002-4703-4836</orcidid><orcidid>https://orcid.org/0000-0003-0292-6061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2019-07, Vol.67 (7), p.5126-5138 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2019_2906622 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Altitude Antennas Bandwidth Bandwidths Communication Communications systems dirty paper coding (DPC) Line of sight communication NOMA non-convex optimization non-orthogonal multiple access (NOMA) Nonorthogonal multiple access Optimization orthogonal multiple access (OMA) Parameters Power management Resource management Throughput Unmanned aerial vehicle (UAV) Unmanned aerial vehicles Wireless communications |
title | UAV-Enabled Communication Using NOMA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Enabled%20Communication%20Using%20NOMA&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Nasir,%20Ali%20Arshad&rft.date=2019-07-01&rft.volume=67&rft.issue=7&rft.spage=5126&rft.epage=5138&rft.pages=5126-5138&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2019.2906622&rft_dat=%3Cproquest_RIE%3E2261885093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261885093&rft_id=info:pmid/&rft_ieee_id=8672190&rfr_iscdi=true |