On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels
We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the batt...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 2017-02, Vol.65 (2), p.863-875 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 875 |
---|---|
container_issue | 2 |
container_start_page | 863 |
container_title | IEEE transactions on communications |
container_volume | 65 |
creator | Badiei Khuzani, Masoud Ebrahimzadeh Saffar, Hamidreza Mitran, Patrick |
description | We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario. |
doi_str_mv | 10.1109/TCOMM.2016.2628059 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2016_2628059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7742331</ieee_id><sourcerecordid>1869404798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqXwB2CxxJxytuPYGauopUitwlAGJstJ7JLS2sVJg_rvST_EdMO9z3unB6FHAiNCIH1ZZvliMaJAkhFNqASeXqEB4VxGILm4RgOAFKJECHmL7ppmDQAxMDZAn7nD40rv2roz-N3_moAz79rgN9j6gCfOhNUBz3ToTNPWbtVvt9u9q0vd1t7hvOuBhQ7fvsNTXZ0CX9o5s2nu0Y3Vm8Y8XOYQfUwny2wWzfPXt2w8j0qa8jaiRkpWlTZOWBVzQowVLBYpTwoqeUEE05ZAzKq0JMaAEIxWNjYFIYWtCi4kG6Lnc-8u-J99_6Va-31w_UlFZJLG0LcdU_ScKoNvmmCs2oV6q8NBEVBHheqkUB0VqovCHno6Q7Ux5h8QIqaMEfYHDzxtAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869404798</pqid></control><display><type>article</type><title>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Badiei Khuzani, Masoud ; Ebrahimzadeh Saffar, Hamidreza ; Mitran, Patrick</creator><creatorcontrib>Badiei Khuzani, Masoud ; Ebrahimzadeh Saffar, Hamidreza ; Mitran, Patrick</creatorcontrib><description>We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2016.2628059</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Batteries ; Calculus of variations ; Channels ; Density ; Differential equations ; Energy harvesting ; Energy harvesting communication ; Energy storage ; Ergodic processes ; Fading ; Fading channels ; finite-state Markov channel ; Internal energy ; Lower bounds ; Markov processes ; Mathematical analysis ; Optimization ; Ordinary differential equations ; Policies ; Power control ; rate conservation law ; Throughput ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on communications, 2017-02, Vol.65 (2), p.863-875</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</citedby><cites>FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</cites><orcidid>0000-0001-6479-1700 ; 0000-0002-9591-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7742331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7742331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badiei Khuzani, Masoud</creatorcontrib><creatorcontrib>Ebrahimzadeh Saffar, Hamidreza</creatorcontrib><creatorcontrib>Mitran, Patrick</creatorcontrib><title>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario.</description><subject>Adaptive control</subject><subject>Batteries</subject><subject>Calculus of variations</subject><subject>Channels</subject><subject>Density</subject><subject>Differential equations</subject><subject>Energy harvesting</subject><subject>Energy harvesting communication</subject><subject>Energy storage</subject><subject>Ergodic processes</subject><subject>Fading</subject><subject>Fading channels</subject><subject>finite-state Markov channel</subject><subject>Internal energy</subject><subject>Lower bounds</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Policies</subject><subject>Power control</subject><subject>rate conservation law</subject><subject>Throughput</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqXwB2CxxJxytuPYGauopUitwlAGJstJ7JLS2sVJg_rvST_EdMO9z3unB6FHAiNCIH1ZZvliMaJAkhFNqASeXqEB4VxGILm4RgOAFKJECHmL7ppmDQAxMDZAn7nD40rv2roz-N3_moAz79rgN9j6gCfOhNUBz3ToTNPWbtVvt9u9q0vd1t7hvOuBhQ7fvsNTXZ0CX9o5s2nu0Y3Vm8Y8XOYQfUwny2wWzfPXt2w8j0qa8jaiRkpWlTZOWBVzQowVLBYpTwoqeUEE05ZAzKq0JMaAEIxWNjYFIYWtCi4kG6Lnc-8u-J99_6Va-31w_UlFZJLG0LcdU_ScKoNvmmCs2oV6q8NBEVBHheqkUB0VqovCHno6Q7Ux5h8QIqaMEfYHDzxtAA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Badiei Khuzani, Masoud</creator><creator>Ebrahimzadeh Saffar, Hamidreza</creator><creator>Mitran, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6479-1700</orcidid><orcidid>https://orcid.org/0000-0002-9591-5259</orcidid></search><sort><creationdate>20170201</creationdate><title>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</title><author>Badiei Khuzani, Masoud ; Ebrahimzadeh Saffar, Hamidreza ; Mitran, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Batteries</topic><topic>Calculus of variations</topic><topic>Channels</topic><topic>Density</topic><topic>Differential equations</topic><topic>Energy harvesting</topic><topic>Energy harvesting communication</topic><topic>Energy storage</topic><topic>Ergodic processes</topic><topic>Fading</topic><topic>Fading channels</topic><topic>finite-state Markov channel</topic><topic>Internal energy</topic><topic>Lower bounds</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Policies</topic><topic>Power control</topic><topic>rate conservation law</topic><topic>Throughput</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badiei Khuzani, Masoud</creatorcontrib><creatorcontrib>Ebrahimzadeh Saffar, Hamidreza</creatorcontrib><creatorcontrib>Mitran, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badiei Khuzani, Masoud</au><au>Ebrahimzadeh Saffar, Hamidreza</au><au>Mitran, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>65</volume><issue>2</issue><spage>863</spage><epage>875</epage><pages>863-875</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2016.2628059</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6479-1700</orcidid><orcidid>https://orcid.org/0000-0002-9591-5259</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0090-6778 |
ispartof | IEEE transactions on communications, 2017-02, Vol.65 (2), p.863-875 |
issn | 0090-6778 1558-0857 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCOMM_2016_2628059 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Batteries Calculus of variations Channels Density Differential equations Energy harvesting Energy harvesting communication Energy storage Ergodic processes Fading Fading channels finite-state Markov channel Internal energy Lower bounds Markov processes Mathematical analysis Optimization Ordinary differential equations Policies Power control rate conservation law Throughput Upper bound Upper bounds |
title | On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Adaptive%20Power%20Control%20for%20Energy%20Harvesting%20Communication%20Over%20Markov%20Fading%20Channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Badiei%20Khuzani,%20Masoud&rft.date=2017-02-01&rft.volume=65&rft.issue=2&rft.spage=863&rft.epage=875&rft.pages=863-875&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2016.2628059&rft_dat=%3Cproquest_RIE%3E1869404798%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869404798&rft_id=info:pmid/&rft_ieee_id=7742331&rfr_iscdi=true |