On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels

We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the batt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2017-02, Vol.65 (2), p.863-875
Hauptverfasser: Badiei Khuzani, Masoud, Ebrahimzadeh Saffar, Hamidreza, Mitran, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 2
container_start_page 863
container_title IEEE transactions on communications
container_volume 65
creator Badiei Khuzani, Masoud
Ebrahimzadeh Saffar, Hamidreza
Mitran, Patrick
description We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario.
doi_str_mv 10.1109/TCOMM.2016.2628059
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCOMM_2016_2628059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7742331</ieee_id><sourcerecordid>1869404798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqXwB2CxxJxytuPYGauopUitwlAGJstJ7JLS2sVJg_rvST_EdMO9z3unB6FHAiNCIH1ZZvliMaJAkhFNqASeXqEB4VxGILm4RgOAFKJECHmL7ppmDQAxMDZAn7nD40rv2roz-N3_moAz79rgN9j6gCfOhNUBz3ToTNPWbtVvt9u9q0vd1t7hvOuBhQ7fvsNTXZ0CX9o5s2nu0Y3Vm8Y8XOYQfUwny2wWzfPXt2w8j0qa8jaiRkpWlTZOWBVzQowVLBYpTwoqeUEE05ZAzKq0JMaAEIxWNjYFIYWtCi4kG6Lnc-8u-J99_6Va-31w_UlFZJLG0LcdU_ScKoNvmmCs2oV6q8NBEVBHheqkUB0VqovCHno6Q7Ux5h8QIqaMEfYHDzxtAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869404798</pqid></control><display><type>article</type><title>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Badiei Khuzani, Masoud ; Ebrahimzadeh Saffar, Hamidreza ; Mitran, Patrick</creator><creatorcontrib>Badiei Khuzani, Masoud ; Ebrahimzadeh Saffar, Hamidreza ; Mitran, Patrick</creatorcontrib><description>We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2016.2628059</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Batteries ; Calculus of variations ; Channels ; Density ; Differential equations ; Energy harvesting ; Energy harvesting communication ; Energy storage ; Ergodic processes ; Fading ; Fading channels ; finite-state Markov channel ; Internal energy ; Lower bounds ; Markov processes ; Mathematical analysis ; Optimization ; Ordinary differential equations ; Policies ; Power control ; rate conservation law ; Throughput ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on communications, 2017-02, Vol.65 (2), p.863-875</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</citedby><cites>FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</cites><orcidid>0000-0001-6479-1700 ; 0000-0002-9591-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7742331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7742331$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badiei Khuzani, Masoud</creatorcontrib><creatorcontrib>Ebrahimzadeh Saffar, Hamidreza</creatorcontrib><creatorcontrib>Mitran, Patrick</creatorcontrib><title>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario.</description><subject>Adaptive control</subject><subject>Batteries</subject><subject>Calculus of variations</subject><subject>Channels</subject><subject>Density</subject><subject>Differential equations</subject><subject>Energy harvesting</subject><subject>Energy harvesting communication</subject><subject>Energy storage</subject><subject>Ergodic processes</subject><subject>Fading</subject><subject>Fading channels</subject><subject>finite-state Markov channel</subject><subject>Internal energy</subject><subject>Lower bounds</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Policies</subject><subject>Power control</subject><subject>rate conservation law</subject><subject>Throughput</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EEqXwB2CxxJxytuPYGauopUitwlAGJstJ7JLS2sVJg_rvST_EdMO9z3unB6FHAiNCIH1ZZvliMaJAkhFNqASeXqEB4VxGILm4RgOAFKJECHmL7ppmDQAxMDZAn7nD40rv2roz-N3_moAz79rgN9j6gCfOhNUBz3ToTNPWbtVvt9u9q0vd1t7hvOuBhQ7fvsNTXZ0CX9o5s2nu0Y3Vm8Y8XOYQfUwny2wWzfPXt2w8j0qa8jaiRkpWlTZOWBVzQowVLBYpTwoqeUEE05ZAzKq0JMaAEIxWNjYFIYWtCi4kG6Lnc-8u-J99_6Va-31w_UlFZJLG0LcdU_ScKoNvmmCs2oV6q8NBEVBHheqkUB0VqovCHno6Q7Ux5h8QIqaMEfYHDzxtAA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Badiei Khuzani, Masoud</creator><creator>Ebrahimzadeh Saffar, Hamidreza</creator><creator>Mitran, Patrick</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6479-1700</orcidid><orcidid>https://orcid.org/0000-0002-9591-5259</orcidid></search><sort><creationdate>20170201</creationdate><title>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</title><author>Badiei Khuzani, Masoud ; Ebrahimzadeh Saffar, Hamidreza ; Mitran, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2e883dcf463d4511ef7347956b285b173af1043d9c1ee07732df4eb11bfdb5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive control</topic><topic>Batteries</topic><topic>Calculus of variations</topic><topic>Channels</topic><topic>Density</topic><topic>Differential equations</topic><topic>Energy harvesting</topic><topic>Energy harvesting communication</topic><topic>Energy storage</topic><topic>Ergodic processes</topic><topic>Fading</topic><topic>Fading channels</topic><topic>finite-state Markov channel</topic><topic>Internal energy</topic><topic>Lower bounds</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Policies</topic><topic>Power control</topic><topic>rate conservation law</topic><topic>Throughput</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badiei Khuzani, Masoud</creatorcontrib><creatorcontrib>Ebrahimzadeh Saffar, Hamidreza</creatorcontrib><creatorcontrib>Mitran, Patrick</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badiei Khuzani, Masoud</au><au>Ebrahimzadeh Saffar, Hamidreza</au><au>Mitran, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>65</volume><issue>2</issue><spage>863</spage><epage>875</epage><pages>863-875</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>We study a continuous-time power policy to maximize the ergodic channel throughput of an energy harvesting transmitter over a Markov fading channel. In particular, we consider transmission power policies that are adapted to the fading process of the channel as well as the storage process of the battery. We obtain a set of equations that determine the probability density of the energy in the battery at each channel state. Specifically, for an ergodic battery storage process, these equations describe the relation between the probability density of stored energy and the transmission power at each channel state. From these equations, we derive an upper bound on the average transmission power and an upper bound on the average transmission rate. To compute a lower bound on the average transmission rate, we apply a calculus of variations technique to a non-linear throughput maximization problem. As a result, we obtain a system of coupled ordinary differential equations for locally optimal power policies. We then focus on the Gilbert-Elliot channel as a special case and derive some structural results for specific classes of fast and slow fading channels. Furthermore, we numerically find a locally optimal transmission power policy for the two channel state scenario.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2016.2628059</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6479-1700</orcidid><orcidid>https://orcid.org/0000-0002-9591-5259</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2017-02, Vol.65 (2), p.863-875
issn 0090-6778
1558-0857
language eng
recordid cdi_crossref_primary_10_1109_TCOMM_2016_2628059
source IEEE Electronic Library (IEL)
subjects Adaptive control
Batteries
Calculus of variations
Channels
Density
Differential equations
Energy harvesting
Energy harvesting communication
Energy storage
Ergodic processes
Fading
Fading channels
finite-state Markov channel
Internal energy
Lower bounds
Markov processes
Mathematical analysis
Optimization
Ordinary differential equations
Policies
Power control
rate conservation law
Throughput
Upper bound
Upper bounds
title On Adaptive Power Control for Energy Harvesting Communication Over Markov Fading Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Adaptive%20Power%20Control%20for%20Energy%20Harvesting%20Communication%20Over%20Markov%20Fading%20Channels&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Badiei%20Khuzani,%20Masoud&rft.date=2017-02-01&rft.volume=65&rft.issue=2&rft.spage=863&rft.epage=875&rft.pages=863-875&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2016.2628059&rft_dat=%3Cproquest_RIE%3E1869404798%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869404798&rft_id=info:pmid/&rft_ieee_id=7742331&rfr_iscdi=true