On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms

We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2020-03, Vol.7 (1), p.384-397
Hauptverfasser: Rossi, Federico, Iglesias, Ramon, Alizadeh, Mahnoosh, Pavone, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 1
container_start_page 384
container_title IEEE transactions on control of network systems
container_volume 7
creator Rossi, Federico
Iglesias, Ramon
Alizadeh, Mahnoosh
Pavone, Marco
description We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.
doi_str_mv 10.1109/TCNS.2019.2923384
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCNS_2019_2923384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8737720</ieee_id><sourcerecordid>2379362016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</originalsourceid><addsrcrecordid>eNqNkU1LxDAURYsoKOoPEDcFl9LxJZkmrbuxfg34Beq6pO2rRqeJJinD-OtNrahLV7kh97wHJ1G0R2BCCORHD8XN_YQCySc0p4xl07VoizKaJmkmYP1P3ox2nXsBAELTcGdb0cetjv0zxnPt0craK6PjE_RLRB3Pem-06Uzv4mtTqYXyq8To5BQ7qZv4fuU8di4e8jDhzizRxjeBNfb1OBANLsbXwhjbKC2_hs8WT8Yq_9y5nWijlQuHu9_ndvR4fvZQXCZXtxfzYnaV1IxxnzSVAF43FWE1gOBVRbFqp9OMt4IJZASkJLRFyAXAlHKSYc5ZIwUnKNsqk2w7Ohjnvlnz3qPz5YvprQ4rS8pEzngwx0OLjK3aGucstuWbVZ20q5JAOVguB8vlYLn8thyYbGSWWJnW1Qp1jT9c0JxSkvM8BGBpofyXgcL02gf08P9oaO-PbYX42wofKAQF9gkmq5pq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379362016</pqid></control><display><type>article</type><title>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Rossi, Federico ; Iglesias, Ramon ; Alizadeh, Mahnoosh ; Pavone, Marco</creator><creatorcontrib>Rossi, Federico ; Iglesias, Ramon ; Alizadeh, Mahnoosh ; Pavone, Marco</creatorcontrib><description>We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2019.2923384</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Automation &amp; Control Systems ; Autonomous cars ; Autonomous vehicles ; Biological system modeling ; Charging stations ; Computational modeling ; Computer Science ; Computer Science, Information Systems ; Computer simulation ; Constraint modelling ; Depreciation ; Economics ; Electric power transmission ; electric vehicles ; Electricity distribution ; Marginal pricing ; networked control systems ; optimal control ; Optimization ; Power demand ; power system economics ; power system planning ; Schedules ; Science &amp; Technology ; Technology ; Time of use electricity pricing ; traffic control ; Transportation ; vehicle routing</subject><ispartof>IEEE transactions on control of network systems, 2020-03, Vol.7 (1), p.384-397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>71</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000521969000035</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</citedby><cites>FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</cites><orcidid>0000-0002-8091-881X ; 0000-0003-3369-3846 ; 0000-0002-0206-4337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8737720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8737720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rossi, Federico</creatorcontrib><creatorcontrib>Iglesias, Ramon</creatorcontrib><creatorcontrib>Alizadeh, Mahnoosh</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><title>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><addtitle>IEEE T CONTROL NETW</addtitle><description>We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.</description><subject>Algorithms</subject><subject>Automation &amp; Control Systems</subject><subject>Autonomous cars</subject><subject>Autonomous vehicles</subject><subject>Biological system modeling</subject><subject>Charging stations</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Depreciation</subject><subject>Economics</subject><subject>Electric power transmission</subject><subject>electric vehicles</subject><subject>Electricity distribution</subject><subject>Marginal pricing</subject><subject>networked control systems</subject><subject>optimal control</subject><subject>Optimization</subject><subject>Power demand</subject><subject>power system economics</subject><subject>power system planning</subject><subject>Schedules</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Time of use electricity pricing</subject><subject>traffic control</subject><subject>Transportation</subject><subject>vehicle routing</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkU1LxDAURYsoKOoPEDcFl9LxJZkmrbuxfg34Beq6pO2rRqeJJinD-OtNrahLV7kh97wHJ1G0R2BCCORHD8XN_YQCySc0p4xl07VoizKaJmkmYP1P3ox2nXsBAELTcGdb0cetjv0zxnPt0craK6PjE_RLRB3Pem-06Uzv4mtTqYXyq8To5BQ7qZv4fuU8di4e8jDhzizRxjeBNfb1OBANLsbXwhjbKC2_hs8WT8Yq_9y5nWijlQuHu9_ndvR4fvZQXCZXtxfzYnaV1IxxnzSVAF43FWE1gOBVRbFqp9OMt4IJZASkJLRFyAXAlHKSYc5ZIwUnKNsqk2w7Ohjnvlnz3qPz5YvprQ4rS8pEzngwx0OLjK3aGucstuWbVZ20q5JAOVguB8vlYLn8thyYbGSWWJnW1Qp1jT9c0JxSkvM8BGBpofyXgcL02gf08P9oaO-PbYX42wofKAQF9gkmq5pq</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rossi, Federico</creator><creator>Iglesias, Ramon</creator><creator>Alizadeh, Mahnoosh</creator><creator>Pavone, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8091-881X</orcidid><orcidid>https://orcid.org/0000-0003-3369-3846</orcidid><orcidid>https://orcid.org/0000-0002-0206-4337</orcidid></search><sort><creationdate>20200301</creationdate><title>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</title><author>Rossi, Federico ; Iglesias, Ramon ; Alizadeh, Mahnoosh ; Pavone, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation &amp; Control Systems</topic><topic>Autonomous cars</topic><topic>Autonomous vehicles</topic><topic>Biological system modeling</topic><topic>Charging stations</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Depreciation</topic><topic>Economics</topic><topic>Electric power transmission</topic><topic>electric vehicles</topic><topic>Electricity distribution</topic><topic>Marginal pricing</topic><topic>networked control systems</topic><topic>optimal control</topic><topic>Optimization</topic><topic>Power demand</topic><topic>power system economics</topic><topic>power system planning</topic><topic>Schedules</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Time of use electricity pricing</topic><topic>traffic control</topic><topic>Transportation</topic><topic>vehicle routing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, Federico</creatorcontrib><creatorcontrib>Iglesias, Ramon</creatorcontrib><creatorcontrib>Alizadeh, Mahnoosh</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rossi, Federico</au><au>Iglesias, Ramon</au><au>Alizadeh, Mahnoosh</au><au>Pavone, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><stitle>IEEE T CONTROL NETW</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>384</spage><epage>397</epage><pages>384-397</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TCNS.2019.2923384</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8091-881X</orcidid><orcidid>https://orcid.org/0000-0003-3369-3846</orcidid><orcidid>https://orcid.org/0000-0002-0206-4337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2020-03, Vol.7 (1), p.384-397
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_crossref_primary_10_1109_TCNS_2019_2923384
source IEEE Electronic Library (IEL)
subjects Algorithms
Automation & Control Systems
Autonomous cars
Autonomous vehicles
Biological system modeling
Charging stations
Computational modeling
Computer Science
Computer Science, Information Systems
Computer simulation
Constraint modelling
Depreciation
Economics
Electric power transmission
electric vehicles
Electricity distribution
Marginal pricing
networked control systems
optimal control
Optimization
Power demand
power system economics
power system planning
Schedules
Science & Technology
Technology
Time of use electricity pricing
traffic control
Transportation
vehicle routing
title On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Interaction%20Between%20Autonomous%20Mobility-on-Demand%20Systems%20and%20the%20Power%20Network:%20Models%20and%20Coordination%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Rossi,%20Federico&rft.date=2020-03-01&rft.volume=7&rft.issue=1&rft.spage=384&rft.epage=397&rft.pages=384-397&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2019.2923384&rft_dat=%3Cproquest_RIE%3E2379362016%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379362016&rft_id=info:pmid/&rft_ieee_id=8737720&rfr_iscdi=true