On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms
We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2020-03, Vol.7 (1), p.384-397 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | 1 |
container_start_page | 384 |
container_title | IEEE transactions on control of network systems |
container_volume | 7 |
creator | Rossi, Federico Iglesias, Ramon Alizadeh, Mahnoosh Pavone, Marco |
description | We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD. |
doi_str_mv | 10.1109/TCNS.2019.2923384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCNS_2019_2923384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8737720</ieee_id><sourcerecordid>2379362016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</originalsourceid><addsrcrecordid>eNqNkU1LxDAURYsoKOoPEDcFl9LxJZkmrbuxfg34Beq6pO2rRqeJJinD-OtNrahLV7kh97wHJ1G0R2BCCORHD8XN_YQCySc0p4xl07VoizKaJmkmYP1P3ox2nXsBAELTcGdb0cetjv0zxnPt0craK6PjE_RLRB3Pem-06Uzv4mtTqYXyq8To5BQ7qZv4fuU8di4e8jDhzizRxjeBNfb1OBANLsbXwhjbKC2_hs8WT8Yq_9y5nWijlQuHu9_ndvR4fvZQXCZXtxfzYnaV1IxxnzSVAF43FWE1gOBVRbFqp9OMt4IJZASkJLRFyAXAlHKSYc5ZIwUnKNsqk2w7Ohjnvlnz3qPz5YvprQ4rS8pEzngwx0OLjK3aGucstuWbVZ20q5JAOVguB8vlYLn8thyYbGSWWJnW1Qp1jT9c0JxSkvM8BGBpofyXgcL02gf08P9oaO-PbYX42wofKAQF9gkmq5pq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2379362016</pqid></control><display><type>article</type><title>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Rossi, Federico ; Iglesias, Ramon ; Alizadeh, Mahnoosh ; Pavone, Marco</creator><creatorcontrib>Rossi, Federico ; Iglesias, Ramon ; Alizadeh, Mahnoosh ; Pavone, Marco</creatorcontrib><description>We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2019.2923384</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Algorithms ; Automation & Control Systems ; Autonomous cars ; Autonomous vehicles ; Biological system modeling ; Charging stations ; Computational modeling ; Computer Science ; Computer Science, Information Systems ; Computer simulation ; Constraint modelling ; Depreciation ; Economics ; Electric power transmission ; electric vehicles ; Electricity distribution ; Marginal pricing ; networked control systems ; optimal control ; Optimization ; Power demand ; power system economics ; power system planning ; Schedules ; Science & Technology ; Technology ; Time of use electricity pricing ; traffic control ; Transportation ; vehicle routing</subject><ispartof>IEEE transactions on control of network systems, 2020-03, Vol.7 (1), p.384-397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>71</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000521969000035</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</citedby><cites>FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</cites><orcidid>0000-0002-8091-881X ; 0000-0003-3369-3846 ; 0000-0002-0206-4337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8737720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8737720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rossi, Federico</creatorcontrib><creatorcontrib>Iglesias, Ramon</creatorcontrib><creatorcontrib>Alizadeh, Mahnoosh</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><title>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><addtitle>IEEE T CONTROL NETW</addtitle><description>We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.</description><subject>Algorithms</subject><subject>Automation & Control Systems</subject><subject>Autonomous cars</subject><subject>Autonomous vehicles</subject><subject>Biological system modeling</subject><subject>Charging stations</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computer simulation</subject><subject>Constraint modelling</subject><subject>Depreciation</subject><subject>Economics</subject><subject>Electric power transmission</subject><subject>electric vehicles</subject><subject>Electricity distribution</subject><subject>Marginal pricing</subject><subject>networked control systems</subject><subject>optimal control</subject><subject>Optimization</subject><subject>Power demand</subject><subject>power system economics</subject><subject>power system planning</subject><subject>Schedules</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Time of use electricity pricing</subject><subject>traffic control</subject><subject>Transportation</subject><subject>vehicle routing</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><recordid>eNqNkU1LxDAURYsoKOoPEDcFl9LxJZkmrbuxfg34Beq6pO2rRqeJJinD-OtNrahLV7kh97wHJ1G0R2BCCORHD8XN_YQCySc0p4xl07VoizKaJmkmYP1P3ox2nXsBAELTcGdb0cetjv0zxnPt0craK6PjE_RLRB3Pem-06Uzv4mtTqYXyq8To5BQ7qZv4fuU8di4e8jDhzizRxjeBNfb1OBANLsbXwhjbKC2_hs8WT8Yq_9y5nWijlQuHu9_ndvR4fvZQXCZXtxfzYnaV1IxxnzSVAF43FWE1gOBVRbFqp9OMt4IJZASkJLRFyAXAlHKSYc5ZIwUnKNsqk2w7Ohjnvlnz3qPz5YvprQ4rS8pEzngwx0OLjK3aGucstuWbVZ20q5JAOVguB8vlYLn8thyYbGSWWJnW1Qp1jT9c0JxSkvM8BGBpofyXgcL02gf08P9oaO-PbYX42wofKAQF9gkmq5pq</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Rossi, Federico</creator><creator>Iglesias, Ramon</creator><creator>Alizadeh, Mahnoosh</creator><creator>Pavone, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8091-881X</orcidid><orcidid>https://orcid.org/0000-0003-3369-3846</orcidid><orcidid>https://orcid.org/0000-0002-0206-4337</orcidid></search><sort><creationdate>20200301</creationdate><title>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</title><author>Rossi, Federico ; Iglesias, Ramon ; Alizadeh, Mahnoosh ; Pavone, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-db706cdb13c0076bb2ebf4486f737e310aa12fe0970042618e963da761eafb8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation & Control Systems</topic><topic>Autonomous cars</topic><topic>Autonomous vehicles</topic><topic>Biological system modeling</topic><topic>Charging stations</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computer simulation</topic><topic>Constraint modelling</topic><topic>Depreciation</topic><topic>Economics</topic><topic>Electric power transmission</topic><topic>electric vehicles</topic><topic>Electricity distribution</topic><topic>Marginal pricing</topic><topic>networked control systems</topic><topic>optimal control</topic><topic>Optimization</topic><topic>Power demand</topic><topic>power system economics</topic><topic>power system planning</topic><topic>Schedules</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Time of use electricity pricing</topic><topic>traffic control</topic><topic>Transportation</topic><topic>vehicle routing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, Federico</creatorcontrib><creatorcontrib>Iglesias, Ramon</creatorcontrib><creatorcontrib>Alizadeh, Mahnoosh</creatorcontrib><creatorcontrib>Pavone, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rossi, Federico</au><au>Iglesias, Ramon</au><au>Alizadeh, Mahnoosh</au><au>Pavone, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><stitle>IEEE T CONTROL NETW</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>384</spage><epage>397</epage><pages>384-397</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>We study the interaction between a fleet of electric self-driving vehicles servicing on-demand transportation requests (referred to as autonomous mobility-on-demand, or AMoD, systems) and the electric power network. We propose a joint model that captures the coupling between the two systems stemming from the vehicles' charging requirements, capturing time-varying customer demand, battery depreciation, and power transmission constraints. First, we show that the model is amenable to efficient optimization. Then, we prove that the socially optimal solution to the joint problem is a general equilibrium if locational marginal pricing is used for electricity. Finally, we show that the equilibrium can be computed by selfish transportation and generator operators (aided by a nonprofit independent system operator) without sharing private information. We assess the performance of the approach and its robustness to stochastic fluctuations in demand through case studies and agent-based simulations. Collectively, these results provide a first-of-a-kind characterization of the interaction between AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TCNS.2019.2923384</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8091-881X</orcidid><orcidid>https://orcid.org/0000-0003-3369-3846</orcidid><orcidid>https://orcid.org/0000-0002-0206-4337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2020-03, Vol.7 (1), p.384-397 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCNS_2019_2923384 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automation & Control Systems Autonomous cars Autonomous vehicles Biological system modeling Charging stations Computational modeling Computer Science Computer Science, Information Systems Computer simulation Constraint modelling Depreciation Economics Electric power transmission electric vehicles Electricity distribution Marginal pricing networked control systems optimal control Optimization Power demand power system economics power system planning Schedules Science & Technology Technology Time of use electricity pricing traffic control Transportation vehicle routing |
title | On the Interaction Between Autonomous Mobility-on-Demand Systems and the Power Network: Models and Coordination Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Interaction%20Between%20Autonomous%20Mobility-on-Demand%20Systems%20and%20the%20Power%20Network:%20Models%20and%20Coordination%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Rossi,%20Federico&rft.date=2020-03-01&rft.volume=7&rft.issue=1&rft.spage=384&rft.epage=397&rft.pages=384-397&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2019.2923384&rft_dat=%3Cproquest_RIE%3E2379362016%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2379362016&rft_id=info:pmid/&rft_ieee_id=8737720&rfr_iscdi=true |