Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges
The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control of network systems 2017-06, Vol.4 (2), p.359-368 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 2 |
container_start_page | 359 |
container_title | IEEE transactions on control of network systems |
container_volume | 4 |
creator | Ogiwara, Kohnosuke Fukami, Tatsuya Takahashi, Norikazu |
description | The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions. |
doi_str_mv | 10.1109/TCNS.2015.2503561 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCNS_2015_2503561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7336529</ieee_id><sourcerecordid>10_1109_TCNS_2015_2503561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</originalsourceid><addsrcrecordid>eNpNkN9OwjAUxhujiQR5AONNX2DY9qwbvSQLoAniBaiXS9udQg0M0k4DPr1bIMar8518fy5-hNxzNuScqcdVsVgOBeNyKCQDmfEr0hMgZCJHObv-p2_JIMZPxhgXsv2hR8yLPvqd__H1mo63azRBe0uLfV2jbfy3b07U17TZIF0etEW6d3QW9GET6YdvNlTTqT9iRRdfO4Ohc98xNN5ipLqu6KRaY7wjN05vIw4ut0_eppNV8ZTMX2fPxXieWADZJE60-8JYqIwW0qXouDKAylkDwipMec6dSaXjVSYQlDJpOrJpxVCKPJM59Ak_79qwjzGgKw_B73Q4lZyVHaey41R2nMoLp7bzcO54RPzL5wCZFAp-AYE3ZJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</title><source>IEEE Electronic Library (IEL)</source><creator>Ogiwara, Kohnosuke ; Fukami, Tatsuya ; Takahashi, Norikazu</creator><creatorcontrib>Ogiwara, Kohnosuke ; Fukami, Tatsuya ; Takahashi, Norikazu</creatorcontrib><description>The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2015.2503561</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebraic connectivity ; consensus algorithm ; Convergence ; convergence rate ; Eigenvalues and eigenfunctions ; Laplace equations ; Laplacian matrix ; multiagent network ; Network topology ; Nickel ; Protocols ; Topology</subject><ispartof>IEEE transactions on control of network systems, 2017-06, Vol.4 (2), p.359-368</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</citedby><cites>FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7336529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7336529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ogiwara, Kohnosuke</creatorcontrib><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><title>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.</description><subject>Algebraic connectivity</subject><subject>consensus algorithm</subject><subject>Convergence</subject><subject>convergence rate</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Laplace equations</subject><subject>Laplacian matrix</subject><subject>multiagent network</subject><subject>Network topology</subject><subject>Nickel</subject><subject>Protocols</subject><subject>Topology</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9OwjAUxhujiQR5AONNX2DY9qwbvSQLoAniBaiXS9udQg0M0k4DPr1bIMar8518fy5-hNxzNuScqcdVsVgOBeNyKCQDmfEr0hMgZCJHObv-p2_JIMZPxhgXsv2hR8yLPvqd__H1mo63azRBe0uLfV2jbfy3b07U17TZIF0etEW6d3QW9GET6YdvNlTTqT9iRRdfO4Ohc98xNN5ipLqu6KRaY7wjN05vIw4ut0_eppNV8ZTMX2fPxXieWADZJE60-8JYqIwW0qXouDKAylkDwipMec6dSaXjVSYQlDJpOrJpxVCKPJM59Ak_79qwjzGgKw_B73Q4lZyVHaey41R2nMoLp7bzcO54RPzL5wCZFAp-AYE3ZJI</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Ogiwara, Kohnosuke</creator><creator>Fukami, Tatsuya</creator><creator>Takahashi, Norikazu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</title><author>Ogiwara, Kohnosuke ; Fukami, Tatsuya ; Takahashi, Norikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebraic connectivity</topic><topic>consensus algorithm</topic><topic>Convergence</topic><topic>convergence rate</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Laplace equations</topic><topic>Laplacian matrix</topic><topic>multiagent network</topic><topic>Network topology</topic><topic>Nickel</topic><topic>Protocols</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogiwara, Kohnosuke</creatorcontrib><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ogiwara, Kohnosuke</au><au>Fukami, Tatsuya</au><au>Takahashi, Norikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>4</volume><issue>2</issue><spage>359</spage><epage>368</epage><pages>359-368</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.</abstract><pub>IEEE</pub><doi>10.1109/TCNS.2015.2503561</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2325-5870 |
ispartof | IEEE transactions on control of network systems, 2017-06, Vol.4 (2), p.359-368 |
issn | 2325-5870 2325-5870 2372-2533 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCNS_2015_2503561 |
source | IEEE Electronic Library (IEL) |
subjects | Algebraic connectivity consensus algorithm Convergence convergence rate Eigenvalues and eigenfunctions Laplace equations Laplacian matrix multiagent network Network topology Nickel Protocols Topology |
title | Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Algebraic%20Connectivity%20in%20the%20Space%20of%20Graphs%20With%20a%20Fixed%20Number%20of%20Vertices%20and%20Edges&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Ogiwara,%20Kohnosuke&rft.date=2017-06-01&rft.volume=4&rft.issue=2&rft.spage=359&rft.epage=368&rft.pages=359-368&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2015.2503561&rft_dat=%3Ccrossref_RIE%3E10_1109_TCNS_2015_2503561%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7336529&rfr_iscdi=true |