Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges

The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control of network systems 2017-06, Vol.4 (2), p.359-368
Hauptverfasser: Ogiwara, Kohnosuke, Fukami, Tatsuya, Takahashi, Norikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 2
container_start_page 359
container_title IEEE transactions on control of network systems
container_volume 4
creator Ogiwara, Kohnosuke
Fukami, Tatsuya
Takahashi, Norikazu
description The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.
doi_str_mv 10.1109/TCNS.2015.2503561
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCNS_2015_2503561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7336529</ieee_id><sourcerecordid>10_1109_TCNS_2015_2503561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</originalsourceid><addsrcrecordid>eNpNkN9OwjAUxhujiQR5AONNX2DY9qwbvSQLoAniBaiXS9udQg0M0k4DPr1bIMar8518fy5-hNxzNuScqcdVsVgOBeNyKCQDmfEr0hMgZCJHObv-p2_JIMZPxhgXsv2hR8yLPvqd__H1mo63azRBe0uLfV2jbfy3b07U17TZIF0etEW6d3QW9GET6YdvNlTTqT9iRRdfO4Ohc98xNN5ipLqu6KRaY7wjN05vIw4ut0_eppNV8ZTMX2fPxXieWADZJE60-8JYqIwW0qXouDKAylkDwipMec6dSaXjVSYQlDJpOrJpxVCKPJM59Ak_79qwjzGgKw_B73Q4lZyVHaey41R2nMoLp7bzcO54RPzL5wCZFAp-AYE3ZJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</title><source>IEEE Electronic Library (IEL)</source><creator>Ogiwara, Kohnosuke ; Fukami, Tatsuya ; Takahashi, Norikazu</creator><creatorcontrib>Ogiwara, Kohnosuke ; Fukami, Tatsuya ; Takahashi, Norikazu</creatorcontrib><description>The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.</description><identifier>ISSN: 2325-5870</identifier><identifier>EISSN: 2325-5870</identifier><identifier>EISSN: 2372-2533</identifier><identifier>DOI: 10.1109/TCNS.2015.2503561</identifier><identifier>CODEN: ITCNAY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebraic connectivity ; consensus algorithm ; Convergence ; convergence rate ; Eigenvalues and eigenfunctions ; Laplace equations ; Laplacian matrix ; multiagent network ; Network topology ; Nickel ; Protocols ; Topology</subject><ispartof>IEEE transactions on control of network systems, 2017-06, Vol.4 (2), p.359-368</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</citedby><cites>FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7336529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7336529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ogiwara, Kohnosuke</creatorcontrib><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><title>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</title><title>IEEE transactions on control of network systems</title><addtitle>TCNS</addtitle><description>The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.</description><subject>Algebraic connectivity</subject><subject>consensus algorithm</subject><subject>Convergence</subject><subject>convergence rate</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Laplace equations</subject><subject>Laplacian matrix</subject><subject>multiagent network</subject><subject>Network topology</subject><subject>Nickel</subject><subject>Protocols</subject><subject>Topology</subject><issn>2325-5870</issn><issn>2325-5870</issn><issn>2372-2533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9OwjAUxhujiQR5AONNX2DY9qwbvSQLoAniBaiXS9udQg0M0k4DPr1bIMar8518fy5-hNxzNuScqcdVsVgOBeNyKCQDmfEr0hMgZCJHObv-p2_JIMZPxhgXsv2hR8yLPvqd__H1mo63azRBe0uLfV2jbfy3b07U17TZIF0etEW6d3QW9GET6YdvNlTTqT9iRRdfO4Ohc98xNN5ipLqu6KRaY7wjN05vIw4ut0_eppNV8ZTMX2fPxXieWADZJE60-8JYqIwW0qXouDKAylkDwipMec6dSaXjVSYQlDJpOrJpxVCKPJM59Ak_79qwjzGgKw_B73Q4lZyVHaey41R2nMoLp7bzcO54RPzL5wCZFAp-AYE3ZJI</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Ogiwara, Kohnosuke</creator><creator>Fukami, Tatsuya</creator><creator>Takahashi, Norikazu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</title><author>Ogiwara, Kohnosuke ; Fukami, Tatsuya ; Takahashi, Norikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f2ace2bc3dba25f4ef19b3e9fcb32c9e4171fb45f1d62e399b448c4d0e5276573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebraic connectivity</topic><topic>consensus algorithm</topic><topic>Convergence</topic><topic>convergence rate</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Laplace equations</topic><topic>Laplacian matrix</topic><topic>multiagent network</topic><topic>Network topology</topic><topic>Nickel</topic><topic>Protocols</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogiwara, Kohnosuke</creatorcontrib><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control of network systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ogiwara, Kohnosuke</au><au>Fukami, Tatsuya</au><au>Takahashi, Norikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges</atitle><jtitle>IEEE transactions on control of network systems</jtitle><stitle>TCNS</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>4</volume><issue>2</issue><spage>359</spage><epage>368</epage><pages>359-368</pages><issn>2325-5870</issn><eissn>2325-5870</eissn><eissn>2372-2533</eissn><coden>ITCNAY</coden><abstract>The second smallest eigenvalue of the Laplacian matrix, also known as the algebraic connectivity, characterizes the performance of some dynamic processes on networks, such as consensus in multiagent networks, synchronization of coupled oscillators, random walks on graphs, and so on. In a multiagent network, for example, the larger the algebraic connectivity of the graph representing interactions between agents is, the faster the convergence speed of a representative consensus algorithm is. This paper tackles the problem of finding graphs that maximize or locally maximize the algebraic connectivity in the space of graphs with a fixed number of vertices and edges. It is shown that some well-known classes of graphs such as star graphs, cycle graphs, complete bipartite graphs, and circulant graphs are algebraic connectivity maximizers or local maximizers under certain conditions.</abstract><pub>IEEE</pub><doi>10.1109/TCNS.2015.2503561</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2325-5870
ispartof IEEE transactions on control of network systems, 2017-06, Vol.4 (2), p.359-368
issn 2325-5870
2325-5870
2372-2533
language eng
recordid cdi_crossref_primary_10_1109_TCNS_2015_2503561
source IEEE Electronic Library (IEL)
subjects Algebraic connectivity
consensus algorithm
Convergence
convergence rate
Eigenvalues and eigenfunctions
Laplace equations
Laplacian matrix
multiagent network
Network topology
Nickel
Protocols
Topology
title Maximizing Algebraic Connectivity in the Space of Graphs With a Fixed Number of Vertices and Edges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximizing%20Algebraic%20Connectivity%20in%20the%20Space%20of%20Graphs%20With%20a%20Fixed%20Number%20of%20Vertices%20and%20Edges&rft.jtitle=IEEE%20transactions%20on%20control%20of%20network%20systems&rft.au=Ogiwara,%20Kohnosuke&rft.date=2017-06-01&rft.volume=4&rft.issue=2&rft.spage=359&rft.epage=368&rft.pages=359-368&rft.issn=2325-5870&rft.eissn=2325-5870&rft.coden=ITCNAY&rft_id=info:doi/10.1109/TCNS.2015.2503561&rft_dat=%3Ccrossref_RIE%3E10_1109_TCNS_2015_2503561%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7336529&rfr_iscdi=true