Evolving Effective Microbehaviors in Real-Time Strategy Games

We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational intelligence and AI in games. 2016-12, Vol.8 (4), p.351-362
Hauptverfasser: Siming Liu, Louis, Sushil J., Ballinger, Christopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue 4
container_start_page 351
container_title IEEE transactions on computational intelligence and AI in games.
container_volume 8
creator Siming Liu
Louis, Sushil J.
Ballinger, Christopher A.
description We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.
doi_str_mv 10.1109/TCIAIG.2016.2544844
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCIAIG_2016_2544844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7438826</ieee_id><sourcerecordid>1850218767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-706449f7c5988f9b239ff7fceca14ba74f35807fae5f77abc322842eca3852b23</originalsourceid><addsrcrecordid>eNo9kE1rAjEQhkNpoWL9BV4Wel6br83HoQcRawVLobXQW8iGiY2oa5N1of--kRXnMgPzvvMOD0JjgieEYP20ni2ny8WEYiImtOJccX6DBkRzVmKh1e11Vt_3aJTSFudijAkqBuh53jW7Lhw2xdx7cG3ooHgLLjY1_NguNDEV4VB8gN2V67CH4rONtoXNX7Gwe0gP6M7bXYLRpQ_R18t8PXstV--L5Wy6Kh3jtC0lFpxrL12llfK6pkx7L70DZwmvreSeVQpLb6HyUtraMUoVp3nNVEWzfIge-7vH2PyeILVm25ziIUcaoipMiZJCZhXrVfn9lCJ4c4xhb-OfIdicUZkelTmjMhdU2TXuXQEArg7JmVJUsH-W32RJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850218767</pqid></control><display><type>article</type><title>Evolving Effective Microbehaviors in Real-Time Strategy Games</title><source>IEEE Electronic Library (IEL)</source><creator>Siming Liu ; Louis, Sushil J. ; Ballinger, Christopher A.</creator><creatorcontrib>Siming Liu ; Louis, Sushil J. ; Ballinger, Christopher A.</creatorcontrib><description>We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.</description><identifier>ISSN: 1943-068X</identifier><identifier>ISSN: 2475-1502</identifier><identifier>EISSN: 1943-0698</identifier><identifier>EISSN: 2475-1510</identifier><identifier>DOI: 10.1109/TCIAIG.2016.2544844</identifier><identifier>CODEN: TCIARR</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Combat ; Computer &amp; video games ; Games ; Genetic algorithm (GA) ; Genetic algorithms ; Heuristic algorithms ; Heuristic methods ; Industries ; influence map (IM) ; micro ; Military operations ; Navigation ; Parameters ; potential field (PF) ; Real time ; real-time strategy (RTS) game ; Real-time systems ; Search algorithms</subject><ispartof>IEEE transactions on computational intelligence and AI in games., 2016-12, Vol.8 (4), p.351-362</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-706449f7c5988f9b239ff7fceca14ba74f35807fae5f77abc322842eca3852b23</citedby><cites>FETCH-LOGICAL-c342t-706449f7c5988f9b239ff7fceca14ba74f35807fae5f77abc322842eca3852b23</cites><orcidid>0000-0001-9004-1380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7438826$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7438826$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siming Liu</creatorcontrib><creatorcontrib>Louis, Sushil J.</creatorcontrib><creatorcontrib>Ballinger, Christopher A.</creatorcontrib><title>Evolving Effective Microbehaviors in Real-Time Strategy Games</title><title>IEEE transactions on computational intelligence and AI in games.</title><addtitle>TCIAIG</addtitle><description>We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.</description><subject>Artificial intelligence</subject><subject>Combat</subject><subject>Computer &amp; video games</subject><subject>Games</subject><subject>Genetic algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Industries</subject><subject>influence map (IM)</subject><subject>micro</subject><subject>Military operations</subject><subject>Navigation</subject><subject>Parameters</subject><subject>potential field (PF)</subject><subject>Real time</subject><subject>real-time strategy (RTS) game</subject><subject>Real-time systems</subject><subject>Search algorithms</subject><issn>1943-068X</issn><issn>2475-1502</issn><issn>1943-0698</issn><issn>2475-1510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEQhkNpoWL9BV4Wel6br83HoQcRawVLobXQW8iGiY2oa5N1of--kRXnMgPzvvMOD0JjgieEYP20ni2ny8WEYiImtOJccX6DBkRzVmKh1e11Vt_3aJTSFudijAkqBuh53jW7Lhw2xdx7cG3ooHgLLjY1_NguNDEV4VB8gN2V67CH4rONtoXNX7Gwe0gP6M7bXYLRpQ_R18t8PXstV--L5Wy6Kh3jtC0lFpxrL12llfK6pkx7L70DZwmvreSeVQpLb6HyUtraMUoVp3nNVEWzfIge-7vH2PyeILVm25ziIUcaoipMiZJCZhXrVfn9lCJ4c4xhb-OfIdicUZkelTmjMhdU2TXuXQEArg7JmVJUsH-W32RJ</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Siming Liu</creator><creator>Louis, Sushil J.</creator><creator>Ballinger, Christopher A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9004-1380</orcidid></search><sort><creationdate>201612</creationdate><title>Evolving Effective Microbehaviors in Real-Time Strategy Games</title><author>Siming Liu ; Louis, Sushil J. ; Ballinger, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-706449f7c5988f9b239ff7fceca14ba74f35807fae5f77abc322842eca3852b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial intelligence</topic><topic>Combat</topic><topic>Computer &amp; video games</topic><topic>Games</topic><topic>Genetic algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Industries</topic><topic>influence map (IM)</topic><topic>micro</topic><topic>Military operations</topic><topic>Navigation</topic><topic>Parameters</topic><topic>potential field (PF)</topic><topic>Real time</topic><topic>real-time strategy (RTS) game</topic><topic>Real-time systems</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siming Liu</creatorcontrib><creatorcontrib>Louis, Sushil J.</creatorcontrib><creatorcontrib>Ballinger, Christopher A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational intelligence and AI in games.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siming Liu</au><au>Louis, Sushil J.</au><au>Ballinger, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolving Effective Microbehaviors in Real-Time Strategy Games</atitle><jtitle>IEEE transactions on computational intelligence and AI in games.</jtitle><stitle>TCIAIG</stitle><date>2016-12</date><risdate>2016</risdate><volume>8</volume><issue>4</issue><spage>351</spage><epage>362</epage><pages>351-362</pages><issn>1943-068X</issn><issn>2475-1502</issn><eissn>1943-0698</eissn><eissn>2475-1510</eissn><coden>TCIARR</coden><abstract>We investigate heuristic search algorithms to generate high-quality micromanagement in combat scenarios for real-time strategy (RTS) games. Macro- and micromanagement are two key aspects of RTS games. While good macro helps a player collect more resources and build more units, good micro helps a player win skirmishes and battles against equal numbers and types of opponent units or win even when outnumbered. In this paper, we use influence maps and potential fields as a basis representation to evolve short-term positioning and movement tactics. Unit microbehaviors in combat are compactly encoded into 14 parameters. A genetic algorithm evolves good microbehaviors by manipulating these 14 parameters. We compared the performance of our evolved ECSLBot with two other state-of-the-art bots, UAlbertaBot and Nova, on several skirmish scenarios in a popular RTS game StarCraft. The results show that the ECSLBot tuned by genetic algorithms outperforms UAlbertaBot and Nova in kiting efficiency, target selection, and fleeing. Further experiments show that the parameter values evolved in one scenario work well in other scenarios and that we can switch between preevolved parameter sets to perform well in unseen scenarios containing more than one type of opponent unit. We believe our representation and approach applied to each unit type of interest can result in effective microperformance against melee and ranged opponents and provides a viable approach toward complete RTS bots.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCIAIG.2016.2544844</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9004-1380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-068X
ispartof IEEE transactions on computational intelligence and AI in games., 2016-12, Vol.8 (4), p.351-362
issn 1943-068X
2475-1502
1943-0698
2475-1510
language eng
recordid cdi_crossref_primary_10_1109_TCIAIG_2016_2544844
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Combat
Computer & video games
Games
Genetic algorithm (GA)
Genetic algorithms
Heuristic algorithms
Heuristic methods
Industries
influence map (IM)
micro
Military operations
Navigation
Parameters
potential field (PF)
Real time
real-time strategy (RTS) game
Real-time systems
Search algorithms
title Evolving Effective Microbehaviors in Real-Time Strategy Games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolving%20Effective%20Microbehaviors%20in%20Real-Time%20Strategy%20Games&rft.jtitle=IEEE%20transactions%20on%20computational%20intelligence%20and%20AI%20in%20games.&rft.au=Siming%20Liu&rft.date=2016-12&rft.volume=8&rft.issue=4&rft.spage=351&rft.epage=362&rft.pages=351-362&rft.issn=1943-068X&rft.eissn=1943-0698&rft.coden=TCIARR&rft_id=info:doi/10.1109/TCIAIG.2016.2544844&rft_dat=%3Cproquest_RIE%3E1850218767%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850218767&rft_id=info:pmid/&rft_ieee_id=7438826&rfr_iscdi=true