Federated Learning Framework for Consumer IoMT-Edge Resource Recommendation Under Telemedicine Services

Medical IoT devices and Telemedicine computation is the growing domain and further involving biomedical computation via machine learning ecosystem has generated an insightful results and analysis. The resources sharing and availability in computing and decision support suffer with a higher latency a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-12, p.1-1
Hauptverfasser: Ahmed, Syed Thouheed, Sivakami, R, Banik, Debajyoty, Khan, Surbhi Bhatia, Dhanaraj, Rajesh Kumar, V, Vinoth Kumar, R, Mahesh T, Almusharraf, Ahlam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on consumer electronics
container_volume
creator Ahmed, Syed Thouheed
Sivakami, R
Banik, Debajyoty
Khan, Surbhi Bhatia
Dhanaraj, Rajesh Kumar
V, Vinoth Kumar
R, Mahesh T
Almusharraf, Ahlam
description Medical IoT devices and Telemedicine computation is the growing domain and further involving biomedical computation via machine learning ecosystem has generated an insightful results and analysis. The resources sharing and availability in computing and decision support suffer with a higher latency and energy consumption. In this manuscript, a novel TinyML based model for medical consumer devices resources allocation and resource sharing is discussed. The proposed framework is developed using Federated learning (FL) models for extracting the resource utilization patterns at individual user levels. These locally computed models are further facilitated with edge computation layer for locating resource patterns extraction. The technique is deployed on the dynamic server based resource pooling for effective analysis and resource scheduling and expanded to develop a reliable recommendation model for medical resource management. The framework has trained 128 clusters of 6400 rural and 12800 urban IoT devices samples for resource allocation and scheduling using telemedicine protocol (TelMED). The framework has secured an efficiency of 93.21% in urban user recommendation and 94.72% for rural users.
doi_str_mv 10.1109/TCE.2024.3508090
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3508090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10793078</ieee_id><sourcerecordid>10_1109_TCE_2024_3508090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628-2054d2837cac7e907ab633f1a74336b7c6a3f8cdcd827aabfec41bba66b9f2743</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqWwMzD4B1Ke7cR2RhSlUKkICcIcOfZLZWhiZLcg_p5U7cB073DPHQ4htwwWjEF531T1ggPPF6IADSWckRkrCp3ljKtzMgModSZAiktyldIHAMsLrmdks0SH0ezQ0TWaOPpxQ5fRDPgT4iftQ6RVGNN-wEhX4bnJardB-oop7KM9FBuGAUdndj6M9H2cvmiDWxzQeetHpG8Yv73FdE0uerNNeHPKOWmWdVM9ZeuXx1X1sM6s5DrjUOSOa6GssQpLUKaTQvTMqFwI2Skrjei1ddZprozperQ56zojZVf2fBrNCRxvbQwpRezbr-gHE39bBu3BUzt5ag-e2pOnCbk7Ih4R_81VKUBp8Qeh2GXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Federated Learning Framework for Consumer IoMT-Edge Resource Recommendation Under Telemedicine Services</title><source>IEEE Electronic Library (IEL)</source><creator>Ahmed, Syed Thouheed ; Sivakami, R ; Banik, Debajyoty ; Khan, Surbhi Bhatia ; Dhanaraj, Rajesh Kumar ; V, Vinoth Kumar ; R, Mahesh T ; Almusharraf, Ahlam</creator><creatorcontrib>Ahmed, Syed Thouheed ; Sivakami, R ; Banik, Debajyoty ; Khan, Surbhi Bhatia ; Dhanaraj, Rajesh Kumar ; V, Vinoth Kumar ; R, Mahesh T ; Almusharraf, Ahlam</creatorcontrib><description>Medical IoT devices and Telemedicine computation is the growing domain and further involving biomedical computation via machine learning ecosystem has generated an insightful results and analysis. The resources sharing and availability in computing and decision support suffer with a higher latency and energy consumption. In this manuscript, a novel TinyML based model for medical consumer devices resources allocation and resource sharing is discussed. The proposed framework is developed using Federated learning (FL) models for extracting the resource utilization patterns at individual user levels. These locally computed models are further facilitated with edge computation layer for locating resource patterns extraction. The technique is deployed on the dynamic server based resource pooling for effective analysis and resource scheduling and expanded to develop a reliable recommendation model for medical resource management. The framework has trained 128 clusters of 6400 rural and 12800 urban IoT devices samples for resource allocation and scheduling using telemedicine protocol (TelMED). The framework has secured an efficiency of 93.21% in urban user recommendation and 94.72% for rural users.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3508090</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Dynamic scheduling ; Ecosystems ; Federated learning ; local computational models ; medical resource allocation ; Monitoring ; Processor scheduling ; Resource management ; resource pooling ; Servers ; Telemedicine ; Tiny machine learning ; TinyML models</subject><ispartof>IEEE transactions on consumer electronics, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3097-6568 ; 0000-0002-2038-7359 ; 0000-0002-5589-8992 ; 0000-0003-1070-3212 ; 0000-0002-2884-899X ; 0000-0002-3756-864X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10793078$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10793078$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ahmed, Syed Thouheed</creatorcontrib><creatorcontrib>Sivakami, R</creatorcontrib><creatorcontrib>Banik, Debajyoty</creatorcontrib><creatorcontrib>Khan, Surbhi Bhatia</creatorcontrib><creatorcontrib>Dhanaraj, Rajesh Kumar</creatorcontrib><creatorcontrib>V, Vinoth Kumar</creatorcontrib><creatorcontrib>R, Mahesh T</creatorcontrib><creatorcontrib>Almusharraf, Ahlam</creatorcontrib><title>Federated Learning Framework for Consumer IoMT-Edge Resource Recommendation Under Telemedicine Services</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Medical IoT devices and Telemedicine computation is the growing domain and further involving biomedical computation via machine learning ecosystem has generated an insightful results and analysis. The resources sharing and availability in computing and decision support suffer with a higher latency and energy consumption. In this manuscript, a novel TinyML based model for medical consumer devices resources allocation and resource sharing is discussed. The proposed framework is developed using Federated learning (FL) models for extracting the resource utilization patterns at individual user levels. These locally computed models are further facilitated with edge computation layer for locating resource patterns extraction. The technique is deployed on the dynamic server based resource pooling for effective analysis and resource scheduling and expanded to develop a reliable recommendation model for medical resource management. The framework has trained 128 clusters of 6400 rural and 12800 urban IoT devices samples for resource allocation and scheduling using telemedicine protocol (TelMED). The framework has secured an efficiency of 93.21% in urban user recommendation and 94.72% for rural users.</description><subject>Computational modeling</subject><subject>Dynamic scheduling</subject><subject>Ecosystems</subject><subject>Federated learning</subject><subject>local computational models</subject><subject>medical resource allocation</subject><subject>Monitoring</subject><subject>Processor scheduling</subject><subject>Resource management</subject><subject>resource pooling</subject><subject>Servers</subject><subject>Telemedicine</subject><subject>Tiny machine learning</subject><subject>TinyML models</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAURS0EEqWwMzD4B1Ke7cR2RhSlUKkICcIcOfZLZWhiZLcg_p5U7cB073DPHQ4htwwWjEF531T1ggPPF6IADSWckRkrCp3ljKtzMgModSZAiktyldIHAMsLrmdks0SH0ezQ0TWaOPpxQ5fRDPgT4iftQ6RVGNN-wEhX4bnJardB-oop7KM9FBuGAUdndj6M9H2cvmiDWxzQeetHpG8Yv73FdE0uerNNeHPKOWmWdVM9ZeuXx1X1sM6s5DrjUOSOa6GssQpLUKaTQvTMqFwI2Skrjei1ddZprozperQ56zojZVf2fBrNCRxvbQwpRezbr-gHE39bBu3BUzt5ag-e2pOnCbk7Ih4R_81VKUBp8Qeh2GXw</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Ahmed, Syed Thouheed</creator><creator>Sivakami, R</creator><creator>Banik, Debajyoty</creator><creator>Khan, Surbhi Bhatia</creator><creator>Dhanaraj, Rajesh Kumar</creator><creator>V, Vinoth Kumar</creator><creator>R, Mahesh T</creator><creator>Almusharraf, Ahlam</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3097-6568</orcidid><orcidid>https://orcid.org/0000-0002-2038-7359</orcidid><orcidid>https://orcid.org/0000-0002-5589-8992</orcidid><orcidid>https://orcid.org/0000-0003-1070-3212</orcidid><orcidid>https://orcid.org/0000-0002-2884-899X</orcidid><orcidid>https://orcid.org/0000-0002-3756-864X</orcidid></search><sort><creationdate>20241210</creationdate><title>Federated Learning Framework for Consumer IoMT-Edge Resource Recommendation Under Telemedicine Services</title><author>Ahmed, Syed Thouheed ; Sivakami, R ; Banik, Debajyoty ; Khan, Surbhi Bhatia ; Dhanaraj, Rajesh Kumar ; V, Vinoth Kumar ; R, Mahesh T ; Almusharraf, Ahlam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628-2054d2837cac7e907ab633f1a74336b7c6a3f8cdcd827aabfec41bba66b9f2743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Dynamic scheduling</topic><topic>Ecosystems</topic><topic>Federated learning</topic><topic>local computational models</topic><topic>medical resource allocation</topic><topic>Monitoring</topic><topic>Processor scheduling</topic><topic>Resource management</topic><topic>resource pooling</topic><topic>Servers</topic><topic>Telemedicine</topic><topic>Tiny machine learning</topic><topic>TinyML models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Syed Thouheed</creatorcontrib><creatorcontrib>Sivakami, R</creatorcontrib><creatorcontrib>Banik, Debajyoty</creatorcontrib><creatorcontrib>Khan, Surbhi Bhatia</creatorcontrib><creatorcontrib>Dhanaraj, Rajesh Kumar</creatorcontrib><creatorcontrib>V, Vinoth Kumar</creatorcontrib><creatorcontrib>R, Mahesh T</creatorcontrib><creatorcontrib>Almusharraf, Ahlam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmed, Syed Thouheed</au><au>Sivakami, R</au><au>Banik, Debajyoty</au><au>Khan, Surbhi Bhatia</au><au>Dhanaraj, Rajesh Kumar</au><au>V, Vinoth Kumar</au><au>R, Mahesh T</au><au>Almusharraf, Ahlam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning Framework for Consumer IoMT-Edge Resource Recommendation Under Telemedicine Services</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-12-10</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Medical IoT devices and Telemedicine computation is the growing domain and further involving biomedical computation via machine learning ecosystem has generated an insightful results and analysis. The resources sharing and availability in computing and decision support suffer with a higher latency and energy consumption. In this manuscript, a novel TinyML based model for medical consumer devices resources allocation and resource sharing is discussed. The proposed framework is developed using Federated learning (FL) models for extracting the resource utilization patterns at individual user levels. These locally computed models are further facilitated with edge computation layer for locating resource patterns extraction. The technique is deployed on the dynamic server based resource pooling for effective analysis and resource scheduling and expanded to develop a reliable recommendation model for medical resource management. The framework has trained 128 clusters of 6400 rural and 12800 urban IoT devices samples for resource allocation and scheduling using telemedicine protocol (TelMED). The framework has secured an efficiency of 93.21% in urban user recommendation and 94.72% for rural users.</abstract><pub>IEEE</pub><doi>10.1109/TCE.2024.3508090</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3097-6568</orcidid><orcidid>https://orcid.org/0000-0002-2038-7359</orcidid><orcidid>https://orcid.org/0000-0002-5589-8992</orcidid><orcidid>https://orcid.org/0000-0003-1070-3212</orcidid><orcidid>https://orcid.org/0000-0002-2884-899X</orcidid><orcidid>https://orcid.org/0000-0002-3756-864X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-12, p.1-1
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2024_3508090
source IEEE Electronic Library (IEL)
subjects Computational modeling
Dynamic scheduling
Ecosystems
Federated learning
local computational models
medical resource allocation
Monitoring
Processor scheduling
Resource management
resource pooling
Servers
Telemedicine
Tiny machine learning
TinyML models
title Federated Learning Framework for Consumer IoMT-Edge Resource Recommendation Under Telemedicine Services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20Framework%20for%20Consumer%20IoMT-Edge%20Resource%20Recommendation%20Under%20Telemedicine%20Services&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Ahmed,%20Syed%20Thouheed&rft.date=2024-12-10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3508090&rft_dat=%3Ccrossref_RIE%3E10_1109_TCE_2024_3508090%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10793078&rfr_iscdi=true