Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning

The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-11, p.1-1
Hauptverfasser: Peelam, Mritunjay Shall, Shah, Kunjan, Chamola, Vinay, Sikdar, Biplab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on consumer electronics
container_volume
creator Peelam, Mritunjay Shall
Shah, Kunjan
Chamola, Vinay
Sikdar, Biplab
description The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems.
doi_str_mv 10.1109/TCE.2024.3487874
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3487874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745161</ieee_id><sourcerecordid>10_1109_TCE_2024_3487874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621-e170a3839847e36fad6328db830838ae4f29b93a578fff345da823c9d781bf6a3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzDkD6TYPid2RqjaghQEQwVjdLHPrSF1URKQ-u9J1A5M9-rej-Fh7FbwmRC8uF_PFzPJpZqBMtpodcYmIstMqoTU52zCeWFS4Dlcsquu--RcqEyaCXOPzd5-2S2GmC4i1g255J22wTaUlMGTPYzqBSNuaEexTz5Cv03eWnLB9uF3tELsKWK0lPx0IW6SJTlqsR-GSsI2Dq9rduGx6ejmdKdsvVys509p-bp6nj-Uqc2lSElojmCgMEoT5B5dDtK42gA3YJCUl0VdAGbaeO9BZQ6NBFs4bUTtc4Qp48dZ2-67riVffbdhh-2hErwaIVUDpGqEVJ0gDZW7YyUQ0b-4VpnIBfwB_fBkGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Peelam, Mritunjay Shall ; Shah, Kunjan ; Chamola, Vinay ; Sikdar, Biplab</creator><creatorcontrib>Peelam, Mritunjay Shall ; Shah, Kunjan ; Chamola, Vinay ; Sikdar, Biplab</creatorcontrib><description>The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3487874</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automobiles ; Blockchain ; Blockchains ; Consumer electronics ; Costs ; Digital Signature ; Federated learning ; Fraud ; Homomorphic Encryption ; Maintenance ; Predictive maintenance ; Real-time systems ; Smart Vehicles ; Temperature sensors ; Verifiable Credentials</subject><ispartof>IEEE transactions on consumer electronics, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0084-4647 ; 0000-0002-6730-3060 ; 0000-0002-8022-3815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10745161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peelam, Mritunjay Shall</creatorcontrib><creatorcontrib>Shah, Kunjan</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Sikdar, Biplab</creatorcontrib><title>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems.</description><subject>Automobiles</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Consumer electronics</subject><subject>Costs</subject><subject>Digital Signature</subject><subject>Federated learning</subject><subject>Fraud</subject><subject>Homomorphic Encryption</subject><subject>Maintenance</subject><subject>Predictive maintenance</subject><subject>Real-time systems</subject><subject>Smart Vehicles</subject><subject>Temperature sensors</subject><subject>Verifiable Credentials</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzDkD6TYPid2RqjaghQEQwVjdLHPrSF1URKQ-u9J1A5M9-rej-Fh7FbwmRC8uF_PFzPJpZqBMtpodcYmIstMqoTU52zCeWFS4Dlcsquu--RcqEyaCXOPzd5-2S2GmC4i1g255J22wTaUlMGTPYzqBSNuaEexTz5Cv03eWnLB9uF3tELsKWK0lPx0IW6SJTlqsR-GSsI2Dq9rduGx6ejmdKdsvVys509p-bp6nj-Uqc2lSElojmCgMEoT5B5dDtK42gA3YJCUl0VdAGbaeO9BZQ6NBFs4bUTtc4Qp48dZ2-67riVffbdhh-2hErwaIVUDpGqEVJ0gDZW7YyUQ0b-4VpnIBfwB_fBkGA</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Peelam, Mritunjay Shall</creator><creator>Shah, Kunjan</creator><creator>Chamola, Vinay</creator><creator>Sikdar, Biplab</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0084-4647</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-8022-3815</orcidid></search><sort><creationdate>20241105</creationdate><title>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</title><author>Peelam, Mritunjay Shall ; Shah, Kunjan ; Chamola, Vinay ; Sikdar, Biplab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621-e170a3839847e36fad6328db830838ae4f29b93a578fff345da823c9d781bf6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automobiles</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Consumer electronics</topic><topic>Costs</topic><topic>Digital Signature</topic><topic>Federated learning</topic><topic>Fraud</topic><topic>Homomorphic Encryption</topic><topic>Maintenance</topic><topic>Predictive maintenance</topic><topic>Real-time systems</topic><topic>Smart Vehicles</topic><topic>Temperature sensors</topic><topic>Verifiable Credentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peelam, Mritunjay Shall</creatorcontrib><creatorcontrib>Shah, Kunjan</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Sikdar, Biplab</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peelam, Mritunjay Shall</au><au>Shah, Kunjan</au><au>Chamola, Vinay</au><au>Sikdar, Biplab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-11-05</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems.</abstract><pub>IEEE</pub><doi>10.1109/TCE.2024.3487874</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0084-4647</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-8022-3815</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-11, p.1-1
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2024_3487874
source IEEE Electronic Library (IEL)
subjects Automobiles
Blockchain
Blockchains
Consumer electronics
Costs
Digital Signature
Federated learning
Fraud
Homomorphic Encryption
Maintenance
Predictive maintenance
Real-time systems
Smart Vehicles
Temperature sensors
Verifiable Credentials
title Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-Enabled%20Vehicle%20Lifecycle%20Management%20With%20Predictive%20Maintenance%20using%20Federated%20Learning&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Peelam,%20Mritunjay%20Shall&rft.date=2024-11-05&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3487874&rft_dat=%3Ccrossref_RIE%3E10_1109_TCE_2024_3487874%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10745161&rfr_iscdi=true