Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning
The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2024-11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on consumer electronics |
container_volume | |
creator | Peelam, Mritunjay Shall Shah, Kunjan Chamola, Vinay Sikdar, Biplab |
description | The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems. |
doi_str_mv | 10.1109/TCE.2024.3487874 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3487874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745161</ieee_id><sourcerecordid>10_1109_TCE_2024_3487874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c621-e170a3839847e36fad6328db830838ae4f29b93a578fff345da823c9d781bf6a3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzDkD6TYPid2RqjaghQEQwVjdLHPrSF1URKQ-u9J1A5M9-rej-Fh7FbwmRC8uF_PFzPJpZqBMtpodcYmIstMqoTU52zCeWFS4Dlcsquu--RcqEyaCXOPzd5-2S2GmC4i1g255J22wTaUlMGTPYzqBSNuaEexTz5Cv03eWnLB9uF3tELsKWK0lPx0IW6SJTlqsR-GSsI2Dq9rduGx6ejmdKdsvVys509p-bp6nj-Uqc2lSElojmCgMEoT5B5dDtK42gA3YJCUl0VdAGbaeO9BZQ6NBFs4bUTtc4Qp48dZ2-67riVffbdhh-2hErwaIVUDpGqEVJ0gDZW7YyUQ0b-4VpnIBfwB_fBkGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Peelam, Mritunjay Shall ; Shah, Kunjan ; Chamola, Vinay ; Sikdar, Biplab</creator><creatorcontrib>Peelam, Mritunjay Shall ; Shah, Kunjan ; Chamola, Vinay ; Sikdar, Biplab</creatorcontrib><description>The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3487874</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automobiles ; Blockchain ; Blockchains ; Consumer electronics ; Costs ; Digital Signature ; Federated learning ; Fraud ; Homomorphic Encryption ; Maintenance ; Predictive maintenance ; Real-time systems ; Smart Vehicles ; Temperature sensors ; Verifiable Credentials</subject><ispartof>IEEE transactions on consumer electronics, 2024-11, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0084-4647 ; 0000-0002-6730-3060 ; 0000-0002-8022-3815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10745161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peelam, Mritunjay Shall</creatorcontrib><creatorcontrib>Shah, Kunjan</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Sikdar, Biplab</creatorcontrib><title>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems.</description><subject>Automobiles</subject><subject>Blockchain</subject><subject>Blockchains</subject><subject>Consumer electronics</subject><subject>Costs</subject><subject>Digital Signature</subject><subject>Federated learning</subject><subject>Fraud</subject><subject>Homomorphic Encryption</subject><subject>Maintenance</subject><subject>Predictive maintenance</subject><subject>Real-time systems</subject><subject>Smart Vehicles</subject><subject>Temperature sensors</subject><subject>Verifiable Credentials</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzDkD6TYPid2RqjaghQEQwVjdLHPrSF1URKQ-u9J1A5M9-rej-Fh7FbwmRC8uF_PFzPJpZqBMtpodcYmIstMqoTU52zCeWFS4Dlcsquu--RcqEyaCXOPzd5-2S2GmC4i1g255J22wTaUlMGTPYzqBSNuaEexTz5Cv03eWnLB9uF3tELsKWK0lPx0IW6SJTlqsR-GSsI2Dq9rduGx6ejmdKdsvVys509p-bp6nj-Uqc2lSElojmCgMEoT5B5dDtK42gA3YJCUl0VdAGbaeO9BZQ6NBFs4bUTtc4Qp48dZ2-67riVffbdhh-2hErwaIVUDpGqEVJ0gDZW7YyUQ0b-4VpnIBfwB_fBkGA</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Peelam, Mritunjay Shall</creator><creator>Shah, Kunjan</creator><creator>Chamola, Vinay</creator><creator>Sikdar, Biplab</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0084-4647</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-8022-3815</orcidid></search><sort><creationdate>20241105</creationdate><title>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</title><author>Peelam, Mritunjay Shall ; Shah, Kunjan ; Chamola, Vinay ; Sikdar, Biplab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c621-e170a3839847e36fad6328db830838ae4f29b93a578fff345da823c9d781bf6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automobiles</topic><topic>Blockchain</topic><topic>Blockchains</topic><topic>Consumer electronics</topic><topic>Costs</topic><topic>Digital Signature</topic><topic>Federated learning</topic><topic>Fraud</topic><topic>Homomorphic Encryption</topic><topic>Maintenance</topic><topic>Predictive maintenance</topic><topic>Real-time systems</topic><topic>Smart Vehicles</topic><topic>Temperature sensors</topic><topic>Verifiable Credentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peelam, Mritunjay Shall</creatorcontrib><creatorcontrib>Shah, Kunjan</creatorcontrib><creatorcontrib>Chamola, Vinay</creatorcontrib><creatorcontrib>Sikdar, Biplab</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peelam, Mritunjay Shall</au><au>Shah, Kunjan</au><au>Chamola, Vinay</au><au>Sikdar, Biplab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-11-05</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The traditional landscape of vehicle lifecycle management systems has several issues, including widespread fraud, opaque processes, and limited accessibility. As a result, there is a need for a paradigm change toward modernized vehicle management techniques, which is connected with the emergence of Intelligent Transport Systems (ITS). This work is a novel solution in the shape of a Blockchain-Assisted Vehicle State Tracking System that is claimed to transform how automobiles are identified, registered, tracked, and controlled inside an Intelligent Transport System. The proposed model offers a secure, auditable ledger for tracking vehicle states. Incorporating federated learning-based predictive maintenance ensures timely servicing while protecting the privacy of user data. This paper explores the intricate architecture and promising capabilities to not only address the shortcomings of existing frameworks but also promote the evolution towards a seamlessly integrated, technologically driven ecosystem for vehicle management and Intelligent Transport Systems.</abstract><pub>IEEE</pub><doi>10.1109/TCE.2024.3487874</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0084-4647</orcidid><orcidid>https://orcid.org/0000-0002-6730-3060</orcidid><orcidid>https://orcid.org/0000-0002-8022-3815</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-11, p.1-1 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCE_2024_3487874 |
source | IEEE Electronic Library (IEL) |
subjects | Automobiles Blockchain Blockchains Consumer electronics Costs Digital Signature Federated learning Fraud Homomorphic Encryption Maintenance Predictive maintenance Real-time systems Smart Vehicles Temperature sensors Verifiable Credentials |
title | Blockchain-Enabled Vehicle Lifecycle Management With Predictive Maintenance using Federated Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-Enabled%20Vehicle%20Lifecycle%20Management%20With%20Predictive%20Maintenance%20using%20Federated%20Learning&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Peelam,%20Mritunjay%20Shall&rft.date=2024-11-05&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3487874&rft_dat=%3Ccrossref_RIE%3E10_1109_TCE_2024_3487874%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10745161&rfr_iscdi=true |