ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems

With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-08, Vol.70 (3), p.5090-5100
Hauptverfasser: Jiang, Donghua, Ahmad, Jawad, Suo, Zhufeng, Alsulami, Mashael M., Ghadi, Yazeed Yasin, Boulila, Wadii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5100
container_issue 3
container_start_page 5090
container_title IEEE transactions on consumer electronics
container_volume 70
creator Jiang, Donghua
Ahmad, Jawad
Suo, Zhufeng
Alsulami, Mashael M.
Ghadi, Yazeed Yasin
Boulila, Wadii
description With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS .
doi_str_mv 10.1109/TCE.2024.3411102
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3411102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552146</ieee_id><sourcerecordid>3144174761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-30ef10d52f146a762236e9186fc98f5e9b1270638c3959d4b776ee87196846403</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7d2e94C6XVQoqHVjwuaTrBlHyZTYX6611JD54WZt935uEh5B7YDIDFT9v5YsYZlzMhIQz4BZmAUjaSwM0lmTAW20gwLa7JjfcHxkAqbifkY51Gy2TzTNfHaiijFL-xosssR5o0bXOqy59sKNuGbvJPrJFmzZ6uBk-TrqvKfPwaWrqI5m1dYx9qm5MfsPa35KrIKo9353dK3peL7fw1St9eVvMkjXIwaghEWADbK16A1JnRnAuNMVhd5LEtFMa7gB-obS5iFe_lzhiNaA3E2kotmZiSx3Fv17dfR_SDO7THvgknnQApwUijIaTYmMr71vseC9f1ZZ31JwfM_elzQZ_70-fO-kLlYayUiPgvrhQPqOIXWVVoYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144174761</pqid></control><display><type>article</type><title>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Donghua ; Ahmad, Jawad ; Suo, Zhufeng ; Alsulami, Mashael M. ; Ghadi, Yazeed Yasin ; Boulila, Wadii</creator><creatorcontrib>Jiang, Donghua ; Ahmad, Jawad ; Suo, Zhufeng ; Alsulami, Mashael M. ; Ghadi, Yazeed Yasin ; Boulila, Wadii</creatorcontrib><description>With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS .</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3411102</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos theory ; chaotic system ; Cryptography ; data anonymization ; Data privacy ; Deep learning ; Electronic commerce ; Encryption ; Faces ; Image reconstruction ; Information filtering ; Information integrity ; known-plaintext attack ; Mobile commerce ; physical unclonable function ; Privacy ; Superlattices</subject><ispartof>IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.5090-5100</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-30ef10d52f146a762236e9186fc98f5e9b1270638c3959d4b776ee87196846403</cites><orcidid>0000-0001-6289-8248 ; 0000-0003-2133-0757 ; 0000-0002-7121-495X ; 0000-0003-2298-8278 ; 0000-0002-3545-6409 ; 0000-0002-1650-871X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10552146$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Donghua</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><creatorcontrib>Suo, Zhufeng</creatorcontrib><creatorcontrib>Alsulami, Mashael M.</creatorcontrib><creatorcontrib>Ghadi, Yazeed Yasin</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><title>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS .</description><subject>Chaos theory</subject><subject>chaotic system</subject><subject>Cryptography</subject><subject>data anonymization</subject><subject>Data privacy</subject><subject>Deep learning</subject><subject>Electronic commerce</subject><subject>Encryption</subject><subject>Faces</subject><subject>Image reconstruction</subject><subject>Information filtering</subject><subject>Information integrity</subject><subject>known-plaintext attack</subject><subject>Mobile commerce</subject><subject>physical unclonable function</subject><subject>Privacy</subject><subject>Superlattices</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7d2e94C6XVQoqHVjwuaTrBlHyZTYX6611JD54WZt935uEh5B7YDIDFT9v5YsYZlzMhIQz4BZmAUjaSwM0lmTAW20gwLa7JjfcHxkAqbifkY51Gy2TzTNfHaiijFL-xosssR5o0bXOqy59sKNuGbvJPrJFmzZ6uBk-TrqvKfPwaWrqI5m1dYx9qm5MfsPa35KrIKo9353dK3peL7fw1St9eVvMkjXIwaghEWADbK16A1JnRnAuNMVhd5LEtFMa7gB-obS5iFe_lzhiNaA3E2kotmZiSx3Fv17dfR_SDO7THvgknnQApwUijIaTYmMr71vseC9f1ZZ31JwfM_elzQZ_70-fO-kLlYayUiPgvrhQPqOIXWVVoYA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jiang, Donghua</creator><creator>Ahmad, Jawad</creator><creator>Suo, Zhufeng</creator><creator>Alsulami, Mashael M.</creator><creator>Ghadi, Yazeed Yasin</creator><creator>Boulila, Wadii</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid><orcidid>https://orcid.org/0000-0002-7121-495X</orcidid><orcidid>https://orcid.org/0000-0003-2298-8278</orcidid><orcidid>https://orcid.org/0000-0002-3545-6409</orcidid><orcidid>https://orcid.org/0000-0002-1650-871X</orcidid></search><sort><creationdate>20240801</creationdate><title>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</title><author>Jiang, Donghua ; Ahmad, Jawad ; Suo, Zhufeng ; Alsulami, Mashael M. ; Ghadi, Yazeed Yasin ; Boulila, Wadii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-30ef10d52f146a762236e9186fc98f5e9b1270638c3959d4b776ee87196846403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chaos theory</topic><topic>chaotic system</topic><topic>Cryptography</topic><topic>data anonymization</topic><topic>Data privacy</topic><topic>Deep learning</topic><topic>Electronic commerce</topic><topic>Encryption</topic><topic>Faces</topic><topic>Image reconstruction</topic><topic>Information filtering</topic><topic>Information integrity</topic><topic>known-plaintext attack</topic><topic>Mobile commerce</topic><topic>physical unclonable function</topic><topic>Privacy</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Donghua</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><creatorcontrib>Suo, Zhufeng</creatorcontrib><creatorcontrib>Alsulami, Mashael M.</creatorcontrib><creatorcontrib>Ghadi, Yazeed Yasin</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Donghua</au><au>Ahmad, Jawad</au><au>Suo, Zhufeng</au><au>Alsulami, Mashael M.</au><au>Ghadi, Yazeed Yasin</au><au>Boulila, Wadii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>5090</spage><epage>5100</epage><pages>5090-5100</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3411102</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid><orcidid>https://orcid.org/0000-0002-7121-495X</orcidid><orcidid>https://orcid.org/0000-0003-2298-8278</orcidid><orcidid>https://orcid.org/0000-0002-3545-6409</orcidid><orcidid>https://orcid.org/0000-0002-1650-871X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.5090-5100
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2024_3411102
source IEEE Electronic Library (IEL)
subjects Chaos theory
chaotic system
Cryptography
data anonymization
Data privacy
Deep learning
Electronic commerce
Encryption
Faces
Image reconstruction
Information filtering
Information integrity
known-plaintext attack
Mobile commerce
physical unclonable function
Privacy
Superlattices
title ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ML-FAS:%20Multi-Level%20Face%20Anonymization%20Scheme%20and%20Its%20Application%20to%20E-Commerce%20Systems&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Jiang,%20Donghua&rft.date=2024-08-01&rft.volume=70&rft.issue=3&rft.spage=5090&rft.epage=5100&rft.pages=5090-5100&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3411102&rft_dat=%3Cproquest_RIE%3E3144174761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144174761&rft_id=info:pmid/&rft_ieee_id=10552146&rfr_iscdi=true