ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems
With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymizat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2024-08, Vol.70 (3), p.5090-5100 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5100 |
---|---|
container_issue | 3 |
container_start_page | 5090 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Jiang, Donghua Ahmad, Jawad Suo, Zhufeng Alsulami, Mashael M. Ghadi, Yazeed Yasin Boulila, Wadii |
description | With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS . |
doi_str_mv | 10.1109/TCE.2024.3411102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3411102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10552146</ieee_id><sourcerecordid>3144174761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-30ef10d52f146a762236e9186fc98f5e9b1270638c3959d4b776ee87196846403</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7d2e94C6XVQoqHVjwuaTrBlHyZTYX6611JD54WZt935uEh5B7YDIDFT9v5YsYZlzMhIQz4BZmAUjaSwM0lmTAW20gwLa7JjfcHxkAqbifkY51Gy2TzTNfHaiijFL-xosssR5o0bXOqy59sKNuGbvJPrJFmzZ6uBk-TrqvKfPwaWrqI5m1dYx9qm5MfsPa35KrIKo9353dK3peL7fw1St9eVvMkjXIwaghEWADbK16A1JnRnAuNMVhd5LEtFMa7gB-obS5iFe_lzhiNaA3E2kotmZiSx3Fv17dfR_SDO7THvgknnQApwUijIaTYmMr71vseC9f1ZZ31JwfM_elzQZ_70-fO-kLlYayUiPgvrhQPqOIXWVVoYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144174761</pqid></control><display><type>article</type><title>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Donghua ; Ahmad, Jawad ; Suo, Zhufeng ; Alsulami, Mashael M. ; Ghadi, Yazeed Yasin ; Boulila, Wadii</creator><creatorcontrib>Jiang, Donghua ; Ahmad, Jawad ; Suo, Zhufeng ; Alsulami, Mashael M. ; Ghadi, Yazeed Yasin ; Boulila, Wadii</creatorcontrib><description>With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS .</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3411102</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chaos theory ; chaotic system ; Cryptography ; data anonymization ; Data privacy ; Deep learning ; Electronic commerce ; Encryption ; Faces ; Image reconstruction ; Information filtering ; Information integrity ; known-plaintext attack ; Mobile commerce ; physical unclonable function ; Privacy ; Superlattices</subject><ispartof>IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.5090-5100</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-30ef10d52f146a762236e9186fc98f5e9b1270638c3959d4b776ee87196846403</cites><orcidid>0000-0001-6289-8248 ; 0000-0003-2133-0757 ; 0000-0002-7121-495X ; 0000-0003-2298-8278 ; 0000-0002-3545-6409 ; 0000-0002-1650-871X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10552146$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10552146$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Donghua</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><creatorcontrib>Suo, Zhufeng</creatorcontrib><creatorcontrib>Alsulami, Mashael M.</creatorcontrib><creatorcontrib>Ghadi, Yazeed Yasin</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><title>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS .</description><subject>Chaos theory</subject><subject>chaotic system</subject><subject>Cryptography</subject><subject>data anonymization</subject><subject>Data privacy</subject><subject>Deep learning</subject><subject>Electronic commerce</subject><subject>Encryption</subject><subject>Faces</subject><subject>Image reconstruction</subject><subject>Information filtering</subject><subject>Information integrity</subject><subject>known-plaintext attack</subject><subject>Mobile commerce</subject><subject>physical unclonable function</subject><subject>Privacy</subject><subject>Superlattices</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFbvHjwseE7d2e94C6XVQoqHVjwuaTrBlHyZTYX6611JD54WZt935uEh5B7YDIDFT9v5YsYZlzMhIQz4BZmAUjaSwM0lmTAW20gwLa7JjfcHxkAqbifkY51Gy2TzTNfHaiijFL-xosssR5o0bXOqy59sKNuGbvJPrJFmzZ6uBk-TrqvKfPwaWrqI5m1dYx9qm5MfsPa35KrIKo9353dK3peL7fw1St9eVvMkjXIwaghEWADbK16A1JnRnAuNMVhd5LEtFMa7gB-obS5iFe_lzhiNaA3E2kotmZiSx3Fv17dfR_SDO7THvgknnQApwUijIaTYmMr71vseC9f1ZZ31JwfM_elzQZ_70-fO-kLlYayUiPgvrhQPqOIXWVVoYA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jiang, Donghua</creator><creator>Ahmad, Jawad</creator><creator>Suo, Zhufeng</creator><creator>Alsulami, Mashael M.</creator><creator>Ghadi, Yazeed Yasin</creator><creator>Boulila, Wadii</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid><orcidid>https://orcid.org/0000-0002-7121-495X</orcidid><orcidid>https://orcid.org/0000-0003-2298-8278</orcidid><orcidid>https://orcid.org/0000-0002-3545-6409</orcidid><orcidid>https://orcid.org/0000-0002-1650-871X</orcidid></search><sort><creationdate>20240801</creationdate><title>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</title><author>Jiang, Donghua ; Ahmad, Jawad ; Suo, Zhufeng ; Alsulami, Mashael M. ; Ghadi, Yazeed Yasin ; Boulila, Wadii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-30ef10d52f146a762236e9186fc98f5e9b1270638c3959d4b776ee87196846403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chaos theory</topic><topic>chaotic system</topic><topic>Cryptography</topic><topic>data anonymization</topic><topic>Data privacy</topic><topic>Deep learning</topic><topic>Electronic commerce</topic><topic>Encryption</topic><topic>Faces</topic><topic>Image reconstruction</topic><topic>Information filtering</topic><topic>Information integrity</topic><topic>known-plaintext attack</topic><topic>Mobile commerce</topic><topic>physical unclonable function</topic><topic>Privacy</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Donghua</creatorcontrib><creatorcontrib>Ahmad, Jawad</creatorcontrib><creatorcontrib>Suo, Zhufeng</creatorcontrib><creatorcontrib>Alsulami, Mashael M.</creatorcontrib><creatorcontrib>Ghadi, Yazeed Yasin</creatorcontrib><creatorcontrib>Boulila, Wadii</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Donghua</au><au>Ahmad, Jawad</au><au>Suo, Zhufeng</au><au>Alsulami, Mashael M.</au><au>Ghadi, Yazeed Yasin</au><au>Boulila, Wadii</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>70</volume><issue>3</issue><spage>5090</spage><epage>5100</epage><pages>5090-5100</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>With the proliferation of electronic commerce, the facial data used for identity authentication and mobile payment are potentially subject to data analytics and mining attacks by third-party platforms, which has raised public privacy concerns. To tackle the issue, a novel Multi-Level Face Anonymization Scheme (ML-FAS) based on deep learning technology is proposed in this paper. Firstly, a 4-D chaotic system is employed to construct different levels of keys with initial parameters securely distributed and managed using the Semiconductor SuperLattice Physical Unclonable Function (SSL-PUF). Secondly, under the guidance of the known prior distribution and adversarial training strategy, a noise-like cipher image is generated by the encryption network to withstand the known-plaintext attacks. Besides, different levels of recipients can leverage the identical decryption network to reconstruct the facial images with varying visual content. Compared with the existing manually designed anonymization schemes, the ML-FAS possesses several significant merits. Finally, extensive simulation experiments verified the effectiveness of the proposed scheme, including its security and robustness. The code is available at https://github.com/DonghuaJiang/MLFAS .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3411102</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6289-8248</orcidid><orcidid>https://orcid.org/0000-0003-2133-0757</orcidid><orcidid>https://orcid.org/0000-0002-7121-495X</orcidid><orcidid>https://orcid.org/0000-0003-2298-8278</orcidid><orcidid>https://orcid.org/0000-0002-3545-6409</orcidid><orcidid>https://orcid.org/0000-0002-1650-871X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-08, Vol.70 (3), p.5090-5100 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCE_2024_3411102 |
source | IEEE Electronic Library (IEL) |
subjects | Chaos theory chaotic system Cryptography data anonymization Data privacy Deep learning Electronic commerce Encryption Faces Image reconstruction Information filtering Information integrity known-plaintext attack Mobile commerce physical unclonable function Privacy Superlattices |
title | ML-FAS: Multi-Level Face Anonymization Scheme and Its Application to E-Commerce Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ML-FAS:%20Multi-Level%20Face%20Anonymization%20Scheme%20and%20Its%20Application%20to%20E-Commerce%20Systems&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Jiang,%20Donghua&rft.date=2024-08-01&rft.volume=70&rft.issue=3&rft.spage=5090&rft.epage=5100&rft.pages=5090-5100&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3411102&rft_dat=%3Cproquest_RIE%3E3144174761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144174761&rft_id=info:pmid/&rft_ieee_id=10552146&rfr_iscdi=true |