On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation

Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.3906-3913
Hauptverfasser: Ghosh, Sutanu, Maity, Santi P., Chakraborty, Chinmay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3913
container_issue 1
container_start_page 3906
container_title IEEE transactions on consumer electronics
container_volume 70
creator Ghosh, Sutanu
Maity, Santi P.
Chakraborty, Chinmay
description Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI.
doi_str_mv 10.1109/TCE.2024.3370313
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3370313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445521</ieee_id><sourcerecordid>3049492234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7cfd6414c72a497864eb81e848eccab5359e440e3fe582ad23d07a9c2bae38a3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYnbxx7lxRgjhQ2qpBEGMlptcqKs2CXGKgF9PSjuw3C3P-97pIeRc8JEQPL7KknQkuYSRUhFXQh2QgdDaMBAyOiQDzmPDFB-rY3ISwpJzAVqaAclmFU1TOnVffu1_XOfrivqK3spbljw_0TffLWjqPjEUbd00vnqnr2E7Jy_ZlN24gAVNFq6qcEXT0Pn1X8MpOSrdKuDZfg9JdpdmyQObzO4fk-sJyyXojkV5WYxBQB5JB3FkxoBzI9CAwTx3c610jAAcVYnaSFdIVfDIxbmcO1TGqSG53NU2bf2xwdDZZb1pq_6iVRxiiKVU0FN8R-VtHUKLpW3a_s_22wput-psr85u1dm9uj5ysYt4RPyHA2gthfoFFFRoZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049492234</pqid></control><display><type>article</type><title>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Ghosh, Sutanu ; Maity, Santi P. ; Chakraborty, Chinmay</creator><creatorcontrib>Ghosh, Sutanu ; Maity, Santi P. ; Chakraborty, Chinmay</creatorcontrib><description>Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3370313</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Biomedical monitoring ; Cognitive radio ; Data transmission ; Device-to-device communication ; Eavesdropping ; Energy efficiency ; Energy harvesting ; Internet of Things ; long short term memory ; Maximization ; Medical services ; Monitoring ; Noise levels ; Optimization ; outage secrecy ; Outages ; Radio frequency ; Radio signals ; Sensors ; Signal to noise ratio ; Temperature measurement ; Temperature sensors ; Transmission rate (communications) ; wireless medical telemetry services</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3906-3913</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7cfd6414c72a497864eb81e848eccab5359e440e3fe582ad23d07a9c2bae38a3</cites><orcidid>0000-0002-1075-3829 ; 0000-0002-4385-0975 ; 0000-0001-5660-7109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10445521$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghosh, Sutanu</creatorcontrib><creatorcontrib>Maity, Santi P.</creatorcontrib><creatorcontrib>Chakraborty, Chinmay</creatorcontrib><title>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI.</description><subject>Artificial intelligence</subject><subject>Biomedical monitoring</subject><subject>Cognitive radio</subject><subject>Data transmission</subject><subject>Device-to-device communication</subject><subject>Eavesdropping</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>Internet of Things</subject><subject>long short term memory</subject><subject>Maximization</subject><subject>Medical services</subject><subject>Monitoring</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>outage secrecy</subject><subject>Outages</subject><subject>Radio frequency</subject><subject>Radio signals</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Transmission rate (communications)</subject><subject>wireless medical telemetry services</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYnbxx7lxRgjhQ2qpBEGMlptcqKs2CXGKgF9PSjuw3C3P-97pIeRc8JEQPL7KknQkuYSRUhFXQh2QgdDaMBAyOiQDzmPDFB-rY3ISwpJzAVqaAclmFU1TOnVffu1_XOfrivqK3spbljw_0TffLWjqPjEUbd00vnqnr2E7Jy_ZlN24gAVNFq6qcEXT0Pn1X8MpOSrdKuDZfg9JdpdmyQObzO4fk-sJyyXojkV5WYxBQB5JB3FkxoBzI9CAwTx3c610jAAcVYnaSFdIVfDIxbmcO1TGqSG53NU2bf2xwdDZZb1pq_6iVRxiiKVU0FN8R-VtHUKLpW3a_s_22wput-psr85u1dm9uj5ysYt4RPyHA2gthfoFFFRoZw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ghosh, Sutanu</creator><creator>Maity, Santi P.</creator><creator>Chakraborty, Chinmay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1075-3829</orcidid><orcidid>https://orcid.org/0000-0002-4385-0975</orcidid><orcidid>https://orcid.org/0000-0001-5660-7109</orcidid></search><sort><creationdate>20240201</creationdate><title>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</title><author>Ghosh, Sutanu ; Maity, Santi P. ; Chakraborty, Chinmay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7cfd6414c72a497864eb81e848eccab5359e440e3fe582ad23d07a9c2bae38a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Biomedical monitoring</topic><topic>Cognitive radio</topic><topic>Data transmission</topic><topic>Device-to-device communication</topic><topic>Eavesdropping</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>Internet of Things</topic><topic>long short term memory</topic><topic>Maximization</topic><topic>Medical services</topic><topic>Monitoring</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>outage secrecy</topic><topic>Outages</topic><topic>Radio frequency</topic><topic>Radio signals</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Transmission rate (communications)</topic><topic>wireless medical telemetry services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Sutanu</creatorcontrib><creatorcontrib>Maity, Santi P.</creatorcontrib><creatorcontrib>Chakraborty, Chinmay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghosh, Sutanu</au><au>Maity, Santi P.</au><au>Chakraborty, Chinmay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>3906</spage><epage>3913</epage><pages>3906-3913</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3370313</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1075-3829</orcidid><orcidid>https://orcid.org/0000-0002-4385-0975</orcidid><orcidid>https://orcid.org/0000-0001-5660-7109</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3906-3913
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2024_3370313
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Biomedical monitoring
Cognitive radio
Data transmission
Device-to-device communication
Eavesdropping
Energy efficiency
Energy harvesting
Internet of Things
long short term memory
Maximization
Medical services
Monitoring
Noise levels
Optimization
outage secrecy
Outages
Radio frequency
Radio signals
Sensors
Signal to noise ratio
Temperature measurement
Temperature sensors
Transmission rate (communications)
wireless medical telemetry services
title On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20EE%20Maximization%20in%20D2D-CRN%20With%20Eavesdropping%20Using%20LSTM-Based%20Channel%20Estimation&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Ghosh,%20Sutanu&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=3906&rft.epage=3913&rft.pages=3906-3913&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3370313&rft_dat=%3Cproquest_RIE%3E3049492234%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049492234&rft_id=info:pmid/&rft_ieee_id=10445521&rfr_iscdi=true