On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation
Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearab...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on consumer electronics 2024-02, Vol.70 (1), p.3906-3913 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3913 |
---|---|
container_issue | 1 |
container_start_page | 3906 |
container_title | IEEE transactions on consumer electronics |
container_volume | 70 |
creator | Ghosh, Sutanu Maity, Santi P. Chakraborty, Chinmay |
description | Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI. |
doi_str_mv | 10.1109/TCE.2024.3370313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2024_3370313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445521</ieee_id><sourcerecordid>3049492234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7cfd6414c72a497864eb81e848eccab5359e440e3fe582ad23d07a9c2bae38a3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYnbxx7lxRgjhQ2qpBEGMlptcqKs2CXGKgF9PSjuw3C3P-97pIeRc8JEQPL7KknQkuYSRUhFXQh2QgdDaMBAyOiQDzmPDFB-rY3ISwpJzAVqaAclmFU1TOnVffu1_XOfrivqK3spbljw_0TffLWjqPjEUbd00vnqnr2E7Jy_ZlN24gAVNFq6qcEXT0Pn1X8MpOSrdKuDZfg9JdpdmyQObzO4fk-sJyyXojkV5WYxBQB5JB3FkxoBzI9CAwTx3c610jAAcVYnaSFdIVfDIxbmcO1TGqSG53NU2bf2xwdDZZb1pq_6iVRxiiKVU0FN8R-VtHUKLpW3a_s_22wput-psr85u1dm9uj5ysYt4RPyHA2gthfoFFFRoZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049492234</pqid></control><display><type>article</type><title>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Ghosh, Sutanu ; Maity, Santi P. ; Chakraborty, Chinmay</creator><creatorcontrib>Ghosh, Sutanu ; Maity, Santi P. ; Chakraborty, Chinmay</creatorcontrib><description>Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2024.3370313</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Biomedical monitoring ; Cognitive radio ; Data transmission ; Device-to-device communication ; Eavesdropping ; Energy efficiency ; Energy harvesting ; Internet of Things ; long short term memory ; Maximization ; Medical services ; Monitoring ; Noise levels ; Optimization ; outage secrecy ; Outages ; Radio frequency ; Radio signals ; Sensors ; Signal to noise ratio ; Temperature measurement ; Temperature sensors ; Transmission rate (communications) ; wireless medical telemetry services</subject><ispartof>IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3906-3913</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-7cfd6414c72a497864eb81e848eccab5359e440e3fe582ad23d07a9c2bae38a3</cites><orcidid>0000-0002-1075-3829 ; 0000-0002-4385-0975 ; 0000-0001-5660-7109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445521$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10445521$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghosh, Sutanu</creatorcontrib><creatorcontrib>Maity, Santi P.</creatorcontrib><creatorcontrib>Chakraborty, Chinmay</creatorcontrib><title>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI.</description><subject>Artificial intelligence</subject><subject>Biomedical monitoring</subject><subject>Cognitive radio</subject><subject>Data transmission</subject><subject>Device-to-device communication</subject><subject>Eavesdropping</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>Internet of Things</subject><subject>long short term memory</subject><subject>Maximization</subject><subject>Medical services</subject><subject>Monitoring</subject><subject>Noise levels</subject><subject>Optimization</subject><subject>outage secrecy</subject><subject>Outages</subject><subject>Radio frequency</subject><subject>Radio signals</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Transmission rate (communications)</subject><subject>wireless medical telemetry services</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYnbxx7lxRgjhQ2qpBEGMlptcqKs2CXGKgF9PSjuw3C3P-97pIeRc8JEQPL7KknQkuYSRUhFXQh2QgdDaMBAyOiQDzmPDFB-rY3ISwpJzAVqaAclmFU1TOnVffu1_XOfrivqK3spbljw_0TffLWjqPjEUbd00vnqnr2E7Jy_ZlN24gAVNFq6qcEXT0Pn1X8MpOSrdKuDZfg9JdpdmyQObzO4fk-sJyyXojkV5WYxBQB5JB3FkxoBzI9CAwTx3c610jAAcVYnaSFdIVfDIxbmcO1TGqSG53NU2bf2xwdDZZb1pq_6iVRxiiKVU0FN8R-VtHUKLpW3a_s_22wput-psr85u1dm9uj5ysYt4RPyHA2gthfoFFFRoZw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ghosh, Sutanu</creator><creator>Maity, Santi P.</creator><creator>Chakraborty, Chinmay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1075-3829</orcidid><orcidid>https://orcid.org/0000-0002-4385-0975</orcidid><orcidid>https://orcid.org/0000-0001-5660-7109</orcidid></search><sort><creationdate>20240201</creationdate><title>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</title><author>Ghosh, Sutanu ; Maity, Santi P. ; Chakraborty, Chinmay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7cfd6414c72a497864eb81e848eccab5359e440e3fe582ad23d07a9c2bae38a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Biomedical monitoring</topic><topic>Cognitive radio</topic><topic>Data transmission</topic><topic>Device-to-device communication</topic><topic>Eavesdropping</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>Internet of Things</topic><topic>long short term memory</topic><topic>Maximization</topic><topic>Medical services</topic><topic>Monitoring</topic><topic>Noise levels</topic><topic>Optimization</topic><topic>outage secrecy</topic><topic>Outages</topic><topic>Radio frequency</topic><topic>Radio signals</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Transmission rate (communications)</topic><topic>wireless medical telemetry services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Sutanu</creatorcontrib><creatorcontrib>Maity, Santi P.</creatorcontrib><creatorcontrib>Chakraborty, Chinmay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghosh, Sutanu</au><au>Maity, Santi P.</au><au>Chakraborty, Chinmay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>70</volume><issue>1</issue><spage>3906</spage><epage>3913</epage><pages>3906-3913</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>Emergence of 5G and beyond promise development of several applications specific Internet-of-Things (IoT) services involving consumer electronics devices doing trustworthy intelligent operations. One such application is smart healthcare support in hospital or home premises where battery driven wearable wireless nodes collect patient data, transmit securely and seamlessly in cooperative communications for monitoring. To meet the goal, this work suggests device-to-device (D2D) communications, operated in cognitive radio network (CRN), protecting from eavesdropping by exploiting artificial intelligence driven channel state information (CSI) estimation. IoT devices (IoDs) harvest energy from radio frequency (RF) signals and transmit own data with relaying message of primary users (PUs). The goal is to maximize energy efficiency (EE) of IoDs satisfying the constraints of own data transmission rate, cooperative outage of PUs, and secrecy outage rate with self-powering. A long short term memory (LSTM) based CSI estimation on indoor complex D2D links is suggested and shows comparable performance on EE maximization and outage secrecy, when compared with known CSI. Simulation results show about 20% EE performance improvement at 7 dB signal-to-noise-ratio (SNR) over 8 dB SNR at the power splitting factor 0.5 and time switching factor 0.07 using LSTM based CSI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2024.3370313</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1075-3829</orcidid><orcidid>https://orcid.org/0000-0002-4385-0975</orcidid><orcidid>https://orcid.org/0000-0001-5660-7109</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0098-3063 |
ispartof | IEEE transactions on consumer electronics, 2024-02, Vol.70 (1), p.3906-3913 |
issn | 0098-3063 1558-4127 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCE_2024_3370313 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Biomedical monitoring Cognitive radio Data transmission Device-to-device communication Eavesdropping Energy efficiency Energy harvesting Internet of Things long short term memory Maximization Medical services Monitoring Noise levels Optimization outage secrecy Outages Radio frequency Radio signals Sensors Signal to noise ratio Temperature measurement Temperature sensors Transmission rate (communications) wireless medical telemetry services |
title | On EE Maximization in D2D-CRN With Eavesdropping Using LSTM-Based Channel Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20EE%20Maximization%20in%20D2D-CRN%20With%20Eavesdropping%20Using%20LSTM-Based%20Channel%20Estimation&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Ghosh,%20Sutanu&rft.date=2024-02-01&rft.volume=70&rft.issue=1&rft.spage=3906&rft.epage=3913&rft.pages=3906-3913&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2024.3370313&rft_dat=%3Cproquest_RIE%3E3049492234%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049492234&rft_id=info:pmid/&rft_ieee_id=10445521&rfr_iscdi=true |