Watch & Do: A Smart IoT Interaction System with Object Detection and Gaze Estimation

The Internet of Things (IoT) attempts to help people access Internet-connected devices, applications, and services anytime and anywhere. However, how providing an efficient and intuitive method of interaction between people and IoT devices is still an open challenge. In this paper, we propose a nove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on consumer electronics 2019-05, Vol.65 (2), p.195-204
Hauptverfasser: Kim, Jung-Hwa, Choi, Seung-June, Jeong, Jin-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 2
container_start_page 195
container_title IEEE transactions on consumer electronics
container_volume 65
creator Kim, Jung-Hwa
Choi, Seung-June
Jeong, Jin-Woo
description The Internet of Things (IoT) attempts to help people access Internet-connected devices, applications, and services anytime and anywhere. However, how providing an efficient and intuitive method of interaction between people and IoT devices is still an open challenge. In this paper, we propose a novel interaction system called Watch & Do , where users can control an IoT device by gazing at it and doing simple gestures. The proposed system mainly consists of: 1) object detection module; 2) gaze estimation module; 3) hand gesture recognition module; and 4) IoT controller module. The target device is identified by various deep learning-based gaze estimation and object detection techniques. Afterwards, hand gesture recognition is applied to generate an IoT device control command which is transmitted to the IoT platform. The experimental results and case studies demonstrate the feasibility of the proposed system and imply the future research directions.
doi_str_mv 10.1109/TCE.2019.2897758
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCE_2019_2897758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8634883</ieee_id><sourcerecordid>2215060760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e1b1176f2266f44ab355b969f255a883a59f892ed78a0ffec155256006f82c683</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKt3wUtA8LZ1kmyyibfS1loo9NAVjyG7TegWu1uTiNRfb8oWTwMz7828-RC6JzAiBNRzOZmNKBA1olIVBZcXaEA4l1lOaHGJBgBKZgwEu0Y3IewASM6pHKDyw8R6i5_wtHvBY7zeGx_xoivxoo3Wmzo2XYvXxxDtHv80cYtX1c7WEU9ttP3QtBs8N78Wz0Js9ubUu0VXznwGe3euQ_T-Oisnb9lyNV9MxsusZkzGzJKKkEI4SoVweW4qxnmlhHKUcyMlM1w5qajdFNKAc7ZOD1EuAISTtBaSDdFjv_fgu69vG6Ledd--TSc1pYSDgEJAUkGvqn0XgrdOH3wK6o-agD6x04mdPrHTZ3bJ8tBbGmvtv1wKlqdY7A_evWfx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215060760</pqid></control><display><type>article</type><title>Watch &amp; Do: A Smart IoT Interaction System with Object Detection and Gaze Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Jung-Hwa ; Choi, Seung-June ; Jeong, Jin-Woo</creator><creatorcontrib>Kim, Jung-Hwa ; Choi, Seung-June ; Jeong, Jin-Woo</creatorcontrib><description>The Internet of Things (IoT) attempts to help people access Internet-connected devices, applications, and services anytime and anywhere. However, how providing an efficient and intuitive method of interaction between people and IoT devices is still an open challenge. In this paper, we propose a novel interaction system called Watch &amp; Do , where users can control an IoT device by gazing at it and doing simple gestures. The proposed system mainly consists of: 1) object detection module; 2) gaze estimation module; 3) hand gesture recognition module; and 4) IoT controller module. The target device is identified by various deep learning-based gaze estimation and object detection techniques. Afterwards, hand gesture recognition is applied to generate an IoT device control command which is transmitted to the IoT platform. The experimental results and case studies demonstrate the feasibility of the proposed system and imply the future research directions.</description><identifier>ISSN: 0098-3063</identifier><identifier>EISSN: 1558-4127</identifier><identifier>DOI: 10.1109/TCE.2019.2897758</identifier><identifier>CODEN: ITCEDA</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Deep learning ; Estimation ; Feasibility studies ; gaze estimation ; Gaze tracking ; Gesture recognition ; Head ; Internet of Things ; Machine learning ; Modules ; Object detection ; Object recognition ; smart interaction ; Target recognition</subject><ispartof>IEEE transactions on consumer electronics, 2019-05, Vol.65 (2), p.195-204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e1b1176f2266f44ab355b969f255a883a59f892ed78a0ffec155256006f82c683</citedby><cites>FETCH-LOGICAL-c338t-e1b1176f2266f44ab355b969f255a883a59f892ed78a0ffec155256006f82c683</cites><orcidid>0000-0001-9313-6860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8634883$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8634883$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Jung-Hwa</creatorcontrib><creatorcontrib>Choi, Seung-June</creatorcontrib><creatorcontrib>Jeong, Jin-Woo</creatorcontrib><title>Watch &amp; Do: A Smart IoT Interaction System with Object Detection and Gaze Estimation</title><title>IEEE transactions on consumer electronics</title><addtitle>T-CE</addtitle><description>The Internet of Things (IoT) attempts to help people access Internet-connected devices, applications, and services anytime and anywhere. However, how providing an efficient and intuitive method of interaction between people and IoT devices is still an open challenge. In this paper, we propose a novel interaction system called Watch &amp; Do , where users can control an IoT device by gazing at it and doing simple gestures. The proposed system mainly consists of: 1) object detection module; 2) gaze estimation module; 3) hand gesture recognition module; and 4) IoT controller module. The target device is identified by various deep learning-based gaze estimation and object detection techniques. Afterwards, hand gesture recognition is applied to generate an IoT device control command which is transmitted to the IoT platform. The experimental results and case studies demonstrate the feasibility of the proposed system and imply the future research directions.</description><subject>Deep learning</subject><subject>Estimation</subject><subject>Feasibility studies</subject><subject>gaze estimation</subject><subject>Gaze tracking</subject><subject>Gesture recognition</subject><subject>Head</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>smart interaction</subject><subject>Target recognition</subject><issn>0098-3063</issn><issn>1558-4127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWKt3wUtA8LZ1kmyyibfS1loo9NAVjyG7TegWu1uTiNRfb8oWTwMz7828-RC6JzAiBNRzOZmNKBA1olIVBZcXaEA4l1lOaHGJBgBKZgwEu0Y3IewASM6pHKDyw8R6i5_wtHvBY7zeGx_xoivxoo3Wmzo2XYvXxxDtHv80cYtX1c7WEU9ttP3QtBs8N78Wz0Js9ubUu0VXznwGe3euQ_T-Oisnb9lyNV9MxsusZkzGzJKKkEI4SoVweW4qxnmlhHKUcyMlM1w5qajdFNKAc7ZOD1EuAISTtBaSDdFjv_fgu69vG6Ledd--TSc1pYSDgEJAUkGvqn0XgrdOH3wK6o-agD6x04mdPrHTZ3bJ8tBbGmvtv1wKlqdY7A_evWfx</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kim, Jung-Hwa</creator><creator>Choi, Seung-June</creator><creator>Jeong, Jin-Woo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9313-6860</orcidid></search><sort><creationdate>20190501</creationdate><title>Watch &amp; Do: A Smart IoT Interaction System with Object Detection and Gaze Estimation</title><author>Kim, Jung-Hwa ; Choi, Seung-June ; Jeong, Jin-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e1b1176f2266f44ab355b969f255a883a59f892ed78a0ffec155256006f82c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deep learning</topic><topic>Estimation</topic><topic>Feasibility studies</topic><topic>gaze estimation</topic><topic>Gaze tracking</topic><topic>Gesture recognition</topic><topic>Head</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>smart interaction</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jung-Hwa</creatorcontrib><creatorcontrib>Choi, Seung-June</creatorcontrib><creatorcontrib>Jeong, Jin-Woo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on consumer electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Jung-Hwa</au><au>Choi, Seung-June</au><au>Jeong, Jin-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Watch &amp; Do: A Smart IoT Interaction System with Object Detection and Gaze Estimation</atitle><jtitle>IEEE transactions on consumer electronics</jtitle><stitle>T-CE</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>65</volume><issue>2</issue><spage>195</spage><epage>204</epage><pages>195-204</pages><issn>0098-3063</issn><eissn>1558-4127</eissn><coden>ITCEDA</coden><abstract>The Internet of Things (IoT) attempts to help people access Internet-connected devices, applications, and services anytime and anywhere. However, how providing an efficient and intuitive method of interaction between people and IoT devices is still an open challenge. In this paper, we propose a novel interaction system called Watch &amp; Do , where users can control an IoT device by gazing at it and doing simple gestures. The proposed system mainly consists of: 1) object detection module; 2) gaze estimation module; 3) hand gesture recognition module; and 4) IoT controller module. The target device is identified by various deep learning-based gaze estimation and object detection techniques. Afterwards, hand gesture recognition is applied to generate an IoT device control command which is transmitted to the IoT platform. The experimental results and case studies demonstrate the feasibility of the proposed system and imply the future research directions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCE.2019.2897758</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9313-6860</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0098-3063
ispartof IEEE transactions on consumer electronics, 2019-05, Vol.65 (2), p.195-204
issn 0098-3063
1558-4127
language eng
recordid cdi_crossref_primary_10_1109_TCE_2019_2897758
source IEEE Electronic Library (IEL)
subjects Deep learning
Estimation
Feasibility studies
gaze estimation
Gaze tracking
Gesture recognition
Head
Internet of Things
Machine learning
Modules
Object detection
Object recognition
smart interaction
Target recognition
title Watch & Do: A Smart IoT Interaction System with Object Detection and Gaze Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A34%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Watch%20&%20Do:%20A%20Smart%20IoT%20Interaction%20System%20with%20Object%20Detection%20and%20Gaze%20Estimation&rft.jtitle=IEEE%20transactions%20on%20consumer%20electronics&rft.au=Kim,%20Jung-Hwa&rft.date=2019-05-01&rft.volume=65&rft.issue=2&rft.spage=195&rft.epage=204&rft.pages=195-204&rft.issn=0098-3063&rft.eissn=1558-4127&rft.coden=ITCEDA&rft_id=info:doi/10.1109/TCE.2019.2897758&rft_dat=%3Cproquest_RIE%3E2215060760%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2215060760&rft_id=info:pmid/&rft_ieee_id=8634883&rfr_iscdi=true