EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces

In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2024-12, Vol.16 (6), p.1997-2007
Hauptverfasser: Tang, Chao, Jiang, Dongyao, Dang, Lujuan, Chen, Badong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2007
container_issue 6
container_start_page 1997
container_title IEEE transactions on cognitive and developmental systems
container_volume 16
creator Tang, Chao
Jiang, Dongyao
Dang, Lujuan
Chen, Badong
description In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods.
doi_str_mv 10.1109/TCDS.2024.3401717
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2024_3401717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535258</ieee_id><sourcerecordid>10_1109_TCDS_2024_3401717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-fa1845b93daf779dfd15766af51b41a0a4c74d36370c2b908bfdebcb4352ce723</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqJ8QKUe_AOhfgXHxxIoRYL2UHq2Nn6gVCRBdjjQr68jUNXL7O7szmg1CD1SMqWUqOdduficMsLElAtCJZU3aMS4VFmhuLr96xm5R5MYvwkhdMZlIeQI6eVyhRfOdLZu93gO0Vnctfi9Cw0c6p80bU_9CQ543fqB6-u0TR3edn3CdQN7F854HqBus7JrjqfeJbpN6MG4-IDuPByim1zrGH29LnflW7b5WK3Ll01mqCj6zAMtRF4pbsFLqay3NJezGficVoICAWGksDx9TQyrFCkqb11lKsFzZpxkfIzoxdeELsbgvD6GuoFw1pToISQ9hKSHkPQ1pKR5umhq59y_-zyZ5gX_BZbvY_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Chao ; Jiang, Dongyao ; Dang, Lujuan ; Chen, Badong</creator><creatorcontrib>Tang, Chao ; Jiang, Dongyao ; Dang, Lujuan ; Chen, Badong</creatorcontrib><description>In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2024.3401717</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain–computer interface (BCI) ; channel selection ; Decoding ; electroencephalogram (EEG) ; Electroencephalography ; Feature extraction ; histogram of oriented gradient (HOG) ; Histograms ; motor imagery (MI) ; Mutual information ; normalized mutual information (NMI) ; Task analysis ; Vectors</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2024-12, Vol.16 (6), p.1997-2007</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1710-3818 ; 0000-0003-2073-248X ; 0000-0002-8929-8127 ; 0009-0009-7035-9266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10535258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Jiang, Dongyao</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><title>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods.</description><subject>Brain–computer interface (BCI)</subject><subject>channel selection</subject><subject>Decoding</subject><subject>electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>histogram of oriented gradient (HOG)</subject><subject>Histograms</subject><subject>motor imagery (MI)</subject><subject>Mutual information</subject><subject>normalized mutual information (NMI)</subject><subject>Task analysis</subject><subject>Vectors</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtuwjAQtKpWKqJ8QKUe_AOhfgXHxxIoRYL2UHq2Nn6gVCRBdjjQr68jUNXL7O7szmg1CD1SMqWUqOdduficMsLElAtCJZU3aMS4VFmhuLr96xm5R5MYvwkhdMZlIeQI6eVyhRfOdLZu93gO0Vnctfi9Cw0c6p80bU_9CQ543fqB6-u0TR3edn3CdQN7F854HqBus7JrjqfeJbpN6MG4-IDuPByim1zrGH29LnflW7b5WK3Ll01mqCj6zAMtRF4pbsFLqay3NJezGficVoICAWGksDx9TQyrFCkqb11lKsFzZpxkfIzoxdeELsbgvD6GuoFw1pToISQ9hKSHkPQ1pKR5umhq59y_-zyZ5gX_BZbvY_4</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Tang, Chao</creator><creator>Jiang, Dongyao</creator><creator>Dang, Lujuan</creator><creator>Chen, Badong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-2073-248X</orcidid><orcidid>https://orcid.org/0000-0002-8929-8127</orcidid><orcidid>https://orcid.org/0009-0009-7035-9266</orcidid></search><sort><creationdate>20241201</creationdate><title>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</title><author>Tang, Chao ; Jiang, Dongyao ; Dang, Lujuan ; Chen, Badong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-fa1845b93daf779dfd15766af51b41a0a4c74d36370c2b908bfdebcb4352ce723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain–computer interface (BCI)</topic><topic>channel selection</topic><topic>Decoding</topic><topic>electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>histogram of oriented gradient (HOG)</topic><topic>Histograms</topic><topic>motor imagery (MI)</topic><topic>Mutual information</topic><topic>normalized mutual information (NMI)</topic><topic>Task analysis</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Jiang, Dongyao</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Chao</au><au>Jiang, Dongyao</au><au>Dang, Lujuan</au><au>Chen, Badong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>1997</spage><epage>2007</epage><pages>1997-2007</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods.</abstract><pub>IEEE</pub><doi>10.1109/TCDS.2024.3401717</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-2073-248X</orcidid><orcidid>https://orcid.org/0000-0002-8929-8127</orcidid><orcidid>https://orcid.org/0009-0009-7035-9266</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2024-12, Vol.16 (6), p.1997-2007
issn 2379-8920
2379-8939
language eng
recordid cdi_crossref_primary_10_1109_TCDS_2024_3401717
source IEEE Electronic Library (IEL)
subjects Brain–computer interface (BCI)
channel selection
Decoding
electroencephalogram (EEG)
Electroencephalography
Feature extraction
histogram of oriented gradient (HOG)
Histograms
motor imagery (MI)
Mutual information
normalized mutual information (NMI)
Task analysis
Vectors
title EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20Decoding%20Based%20on%20Normalized%20Mutual%20Information%20for%20Motor%20Imagery%20Brain-Computer%20Interfaces&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Tang,%20Chao&rft.date=2024-12-01&rft.volume=16&rft.issue=6&rft.spage=1997&rft.epage=2007&rft.pages=1997-2007&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2024.3401717&rft_dat=%3Ccrossref_RIE%3E10_1109_TCDS_2024_3401717%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10535258&rfr_iscdi=true