EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces
In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and red...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cognitive and developmental systems 2024-12, Vol.16 (6), p.1997-2007 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2007 |
---|---|
container_issue | 6 |
container_start_page | 1997 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | 16 |
creator | Tang, Chao Jiang, Dongyao Dang, Lujuan Chen, Badong |
description | In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods. |
doi_str_mv | 10.1109/TCDS.2024.3401717 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2024_3401717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535258</ieee_id><sourcerecordid>10_1109_TCDS_2024_3401717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-fa1845b93daf779dfd15766af51b41a0a4c74d36370c2b908bfdebcb4352ce723</originalsourceid><addsrcrecordid>eNpNUMtuwjAQtKpWKqJ8QKUe_AOhfgXHxxIoRYL2UHq2Nn6gVCRBdjjQr68jUNXL7O7szmg1CD1SMqWUqOdduficMsLElAtCJZU3aMS4VFmhuLr96xm5R5MYvwkhdMZlIeQI6eVyhRfOdLZu93gO0Vnctfi9Cw0c6p80bU_9CQ543fqB6-u0TR3edn3CdQN7F854HqBus7JrjqfeJbpN6MG4-IDuPByim1zrGH29LnflW7b5WK3Ll01mqCj6zAMtRF4pbsFLqay3NJezGficVoICAWGksDx9TQyrFCkqb11lKsFzZpxkfIzoxdeELsbgvD6GuoFw1pToISQ9hKSHkPQ1pKR5umhq59y_-zyZ5gX_BZbvY_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Chao ; Jiang, Dongyao ; Dang, Lujuan ; Chen, Badong</creator><creatorcontrib>Tang, Chao ; Jiang, Dongyao ; Dang, Lujuan ; Chen, Badong</creatorcontrib><description>In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2024.3401717</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Brain–computer interface (BCI) ; channel selection ; Decoding ; electroencephalogram (EEG) ; Electroencephalography ; Feature extraction ; histogram of oriented gradient (HOG) ; Histograms ; motor imagery (MI) ; Mutual information ; normalized mutual information (NMI) ; Task analysis ; Vectors</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2024-12, Vol.16 (6), p.1997-2007</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1710-3818 ; 0000-0003-2073-248X ; 0000-0002-8929-8127 ; 0009-0009-7035-9266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10535258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Jiang, Dongyao</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><title>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods.</description><subject>Brain–computer interface (BCI)</subject><subject>channel selection</subject><subject>Decoding</subject><subject>electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>histogram of oriented gradient (HOG)</subject><subject>Histograms</subject><subject>motor imagery (MI)</subject><subject>Mutual information</subject><subject>normalized mutual information (NMI)</subject><subject>Task analysis</subject><subject>Vectors</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtuwjAQtKpWKqJ8QKUe_AOhfgXHxxIoRYL2UHq2Nn6gVCRBdjjQr68jUNXL7O7szmg1CD1SMqWUqOdduficMsLElAtCJZU3aMS4VFmhuLr96xm5R5MYvwkhdMZlIeQI6eVyhRfOdLZu93gO0Vnctfi9Cw0c6p80bU_9CQ543fqB6-u0TR3edn3CdQN7F854HqBus7JrjqfeJbpN6MG4-IDuPByim1zrGH29LnflW7b5WK3Ll01mqCj6zAMtRF4pbsFLqay3NJezGficVoICAWGksDx9TQyrFCkqb11lKsFzZpxkfIzoxdeELsbgvD6GuoFw1pToISQ9hKSHkPQ1pKR5umhq59y_-zyZ5gX_BZbvY_4</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Tang, Chao</creator><creator>Jiang, Dongyao</creator><creator>Dang, Lujuan</creator><creator>Chen, Badong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-2073-248X</orcidid><orcidid>https://orcid.org/0000-0002-8929-8127</orcidid><orcidid>https://orcid.org/0009-0009-7035-9266</orcidid></search><sort><creationdate>20241201</creationdate><title>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</title><author>Tang, Chao ; Jiang, Dongyao ; Dang, Lujuan ; Chen, Badong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-fa1845b93daf779dfd15766af51b41a0a4c74d36370c2b908bfdebcb4352ce723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain–computer interface (BCI)</topic><topic>channel selection</topic><topic>Decoding</topic><topic>electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>histogram of oriented gradient (HOG)</topic><topic>Histograms</topic><topic>motor imagery (MI)</topic><topic>Mutual information</topic><topic>normalized mutual information (NMI)</topic><topic>Task analysis</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Chao</creatorcontrib><creatorcontrib>Jiang, Dongyao</creatorcontrib><creatorcontrib>Dang, Lujuan</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Chao</au><au>Jiang, Dongyao</au><au>Dang, Lujuan</au><au>Chen, Badong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><spage>1997</spage><epage>2007</epage><pages>1997-2007</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>In current research, noninvasive brain-computer interfaces (BCIs) typically rely on electroencephalogram (EEG) signals to measure brain activity. Motor imagery EEG decoding is an important research field of BCIs. Although multichannel EEG signals provide higher resolution, they contain noise and redundant data unrelated to the task, which affect the performance of BCI systems. We investigate the interactions between EEG signals from dependence analysis to improve the classification accuracy. In this article, a novel channel selection method based on normalized mutual information (NMI) is first proposed to select the informative channels. Then, a histogram of oriented gradient is applied to feature extraction in the rearranged NMI matrices. Finally, a support vector machine with a radial basis function kernel is used for the classification of different motor imagery tasks. Four publicly available BCI datasets are employed to evaluate the effectiveness of the proposed method. The experimental results show that the proposed decoding scheme significantly improves classification accuracy and outperforms other competing methods.</abstract><pub>IEEE</pub><doi>10.1109/TCDS.2024.3401717</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-2073-248X</orcidid><orcidid>https://orcid.org/0000-0002-8929-8127</orcidid><orcidid>https://orcid.org/0009-0009-7035-9266</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2024-12, Vol.16 (6), p.1997-2007 |
issn | 2379-8920 2379-8939 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCDS_2024_3401717 |
source | IEEE Electronic Library (IEL) |
subjects | Brain–computer interface (BCI) channel selection Decoding electroencephalogram (EEG) Electroencephalography Feature extraction histogram of oriented gradient (HOG) Histograms motor imagery (MI) Mutual information normalized mutual information (NMI) Task analysis Vectors |
title | EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain-Computer Interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20Decoding%20Based%20on%20Normalized%20Mutual%20Information%20for%20Motor%20Imagery%20Brain-Computer%20Interfaces&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Tang,%20Chao&rft.date=2024-12-01&rft.volume=16&rft.issue=6&rft.spage=1997&rft.epage=2007&rft.pages=1997-2007&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2024.3401717&rft_dat=%3Ccrossref_RIE%3E10_1109_TCDS_2024_3401717%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10535258&rfr_iscdi=true |