Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation

Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2022-09, Vol.14 (3), p.1066-1081
Hauptverfasser: Xu, Chaoqing, Sun, Guodao, Liang, Ronghua, Xu, Xiufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1081
container_issue 3
container_start_page 1066
container_title IEEE transactions on cognitive and developmental systems
container_volume 14
creator Xu, Chaoqing
Sun, Guodao
Liang, Ronghua
Xu, Xiufang
description Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification.
doi_str_mv 10.1109/TCDS.2021.3094555
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2021_3094555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9474448</ieee_id><sourcerecordid>2712053251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gHgJeN46-epujrpaFQo9tHoNSTpbtu5HzaaI_767tPQ0c3jed4aHkHsGU8ZAP63z19WUA2dTAVoqpa7IiItUJ5kW-vqyc7glk67bAQCbiTST6Ygsv9HHNtB5idWGrmJAW1dlgzSvDl3EUDZbOg-2xr82_NCiJ1-CLZuedxjoOlgf6Qq3NTbRxrJt7shNYasOJ-c5Jl_zt3X-kSyW75_58yLxXIuYFFqngDO5SR1nM3Dao5PI_PAXemZ9IWyhnIJMAWy01hKFcyhQih4QmRiTx1PvPrS_B-yi2bWH0PQnDU8ZByW4Yj3FTpQPbdcFLMw-lLUN_4aBGdSZQZ0Z1Jmzuj7zcMqUiHjhtUyllJk4AqVhadM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712053251</pqid></control><display><type>article</type><title>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Chaoqing ; Sun, Guodao ; Liang, Ronghua ; Xu, Xiufang</creator><creatorcontrib>Xu, Chaoqing ; Sun, Guodao ; Liang, Ronghua ; Xu, Xiufang</creatorcontrib><description>Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2021.3094555</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Brain ; Brain fiber tracts ; Clustering ; Clustering algorithms ; Clustering methods ; deep clustering ; Deep learning ; feature construction ; Fields (mathematics) ; Optical fiber networks ; Segmentation ; Shape ; Streaming media ; streamline simplification ; vector field</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2022-09, Vol.14 (3), p.1066-1081</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</citedby><cites>FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</cites><orcidid>0000-0003-2077-9608 ; 0000-0003-0955-5611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9474448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9474448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Chaoqing</creatorcontrib><creatorcontrib>Sun, Guodao</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Xu, Xiufang</creatorcontrib><title>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain fiber tracts</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>deep clustering</subject><subject>Deep learning</subject><subject>feature construction</subject><subject>Fields (mathematics)</subject><subject>Optical fiber networks</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Streaming media</subject><subject>streamline simplification</subject><subject>vector field</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGp_gHgJeN46-epujrpaFQo9tHoNSTpbtu5HzaaI_767tPQ0c3jed4aHkHsGU8ZAP63z19WUA2dTAVoqpa7IiItUJ5kW-vqyc7glk67bAQCbiTST6Ygsv9HHNtB5idWGrmJAW1dlgzSvDl3EUDZbOg-2xr82_NCiJ1-CLZuedxjoOlgf6Qq3NTbRxrJt7shNYasOJ-c5Jl_zt3X-kSyW75_58yLxXIuYFFqngDO5SR1nM3Dao5PI_PAXemZ9IWyhnIJMAWy01hKFcyhQih4QmRiTx1PvPrS_B-yi2bWH0PQnDU8ZByW4Yj3FTpQPbdcFLMw-lLUN_4aBGdSZQZ0Z1Jmzuj7zcMqUiHjhtUyllJk4AqVhadM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Xu, Chaoqing</creator><creator>Sun, Guodao</creator><creator>Liang, Ronghua</creator><creator>Xu, Xiufang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2077-9608</orcidid><orcidid>https://orcid.org/0000-0003-0955-5611</orcidid></search><sort><creationdate>20220901</creationdate><title>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</title><author>Xu, Chaoqing ; Sun, Guodao ; Liang, Ronghua ; Xu, Xiufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain fiber tracts</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>deep clustering</topic><topic>Deep learning</topic><topic>feature construction</topic><topic>Fields (mathematics)</topic><topic>Optical fiber networks</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Streaming media</topic><topic>streamline simplification</topic><topic>vector field</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chaoqing</creatorcontrib><creatorcontrib>Sun, Guodao</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Xu, Xiufang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Chaoqing</au><au>Sun, Guodao</au><au>Liang, Ronghua</au><au>Xu, Xiufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1066</spage><epage>1081</epage><pages>1066-1081</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2021.3094555</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2077-9608</orcidid><orcidid>https://orcid.org/0000-0003-0955-5611</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2022-09, Vol.14 (3), p.1066-1081
issn 2379-8920
2379-8939
language eng
recordid cdi_crossref_primary_10_1109_TCDS_2021_3094555
source IEEE Electronic Library (IEL)
subjects Algorithms
Brain
Brain fiber tracts
Clustering
Clustering algorithms
Clustering methods
deep clustering
Deep learning
feature construction
Fields (mathematics)
Optical fiber networks
Segmentation
Shape
Streaming media
streamline simplification
vector field
title Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20Field%20Streamline%20Clustering%20Framework%20for%20Brain%20Fiber%20Tract%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Xu,%20Chaoqing&rft.date=2022-09-01&rft.volume=14&rft.issue=3&rft.spage=1066&rft.epage=1081&rft.pages=1066-1081&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2021.3094555&rft_dat=%3Cproquest_RIE%3E2712053251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712053251&rft_id=info:pmid/&rft_ieee_id=9474448&rfr_iscdi=true