Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation
Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering fra...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cognitive and developmental systems 2022-09, Vol.14 (3), p.1066-1081 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1081 |
---|---|
container_issue | 3 |
container_start_page | 1066 |
container_title | IEEE transactions on cognitive and developmental systems |
container_volume | 14 |
creator | Xu, Chaoqing Sun, Guodao Liang, Ronghua Xu, Xiufang |
description | Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification. |
doi_str_mv | 10.1109/TCDS.2021.3094555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2021_3094555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9474448</ieee_id><sourcerecordid>2712053251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gHgJeN46-epujrpaFQo9tHoNSTpbtu5HzaaI_767tPQ0c3jed4aHkHsGU8ZAP63z19WUA2dTAVoqpa7IiItUJ5kW-vqyc7glk67bAQCbiTST6Ygsv9HHNtB5idWGrmJAW1dlgzSvDl3EUDZbOg-2xr82_NCiJ1-CLZuedxjoOlgf6Qq3NTbRxrJt7shNYasOJ-c5Jl_zt3X-kSyW75_58yLxXIuYFFqngDO5SR1nM3Dao5PI_PAXemZ9IWyhnIJMAWy01hKFcyhQih4QmRiTx1PvPrS_B-yi2bWH0PQnDU8ZByW4Yj3FTpQPbdcFLMw-lLUN_4aBGdSZQZ0Z1Jmzuj7zcMqUiHjhtUyllJk4AqVhadM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712053251</pqid></control><display><type>article</type><title>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Chaoqing ; Sun, Guodao ; Liang, Ronghua ; Xu, Xiufang</creator><creatorcontrib>Xu, Chaoqing ; Sun, Guodao ; Liang, Ronghua ; Xu, Xiufang</creatorcontrib><description>Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2021.3094555</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Brain ; Brain fiber tracts ; Clustering ; Clustering algorithms ; Clustering methods ; deep clustering ; Deep learning ; feature construction ; Fields (mathematics) ; Optical fiber networks ; Segmentation ; Shape ; Streaming media ; streamline simplification ; vector field</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2022-09, Vol.14 (3), p.1066-1081</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</citedby><cites>FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</cites><orcidid>0000-0003-2077-9608 ; 0000-0003-0955-5611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9474448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9474448$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Chaoqing</creatorcontrib><creatorcontrib>Sun, Guodao</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Xu, Xiufang</creatorcontrib><title>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain fiber tracts</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>deep clustering</subject><subject>Deep learning</subject><subject>feature construction</subject><subject>Fields (mathematics)</subject><subject>Optical fiber networks</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Streaming media</subject><subject>streamline simplification</subject><subject>vector field</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGp_gHgJeN46-epujrpaFQo9tHoNSTpbtu5HzaaI_767tPQ0c3jed4aHkHsGU8ZAP63z19WUA2dTAVoqpa7IiItUJ5kW-vqyc7glk67bAQCbiTST6Ygsv9HHNtB5idWGrmJAW1dlgzSvDl3EUDZbOg-2xr82_NCiJ1-CLZuedxjoOlgf6Qq3NTbRxrJt7shNYasOJ-c5Jl_zt3X-kSyW75_58yLxXIuYFFqngDO5SR1nM3Dao5PI_PAXemZ9IWyhnIJMAWy01hKFcyhQih4QmRiTx1PvPrS_B-yi2bWH0PQnDU8ZByW4Yj3FTpQPbdcFLMw-lLUN_4aBGdSZQZ0Z1Jmzuj7zcMqUiHjhtUyllJk4AqVhadM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Xu, Chaoqing</creator><creator>Sun, Guodao</creator><creator>Liang, Ronghua</creator><creator>Xu, Xiufang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2077-9608</orcidid><orcidid>https://orcid.org/0000-0003-0955-5611</orcidid></search><sort><creationdate>20220901</creationdate><title>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</title><author>Xu, Chaoqing ; Sun, Guodao ; Liang, Ronghua ; Xu, Xiufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f9970e64d7b2160b9ceb4e1c1637ec1acf3af5b508500d9994e3bbe3e4337e383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain fiber tracts</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>deep clustering</topic><topic>Deep learning</topic><topic>feature construction</topic><topic>Fields (mathematics)</topic><topic>Optical fiber networks</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Streaming media</topic><topic>streamline simplification</topic><topic>vector field</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chaoqing</creatorcontrib><creatorcontrib>Sun, Guodao</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Xu, Xiufang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Chaoqing</au><au>Sun, Guodao</au><au>Liang, Ronghua</au><au>Xu, Xiufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1066</spage><epage>1081</epage><pages>1066-1081</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Brain fiber tracts are widely used in studying brain diseases, which may lead to a better understanding of how disease affects the brain. The segmentation of brain fiber tracts assumed enormous importance in disease analysis. In this article, we propose a novel vector field streamline clustering framework for brain fiber tract segmentations. Brain fiber tracts are first expressed in a vector field and compressed using the streamline simplification algorithm. After streamline normalization and regular-polyhedron projection, high-dimensional features of each fiber tract are computed and fed to the improved deep embedded clustering (IDEC) algorithm. We also provide qualitative and quantitative evaluations of the IDEC clustering method and QB clustering method. Our clustering results of the brain fiber tracts help researchers gain perception of the brain structure. This work has the potential to automatically create a robust fiber bundle template that can effectively segment brain fiber tracts while enabling consistent anatomical tract identification.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2021.3094555</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2077-9608</orcidid><orcidid>https://orcid.org/0000-0003-0955-5611</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8920 |
ispartof | IEEE transactions on cognitive and developmental systems, 2022-09, Vol.14 (3), p.1066-1081 |
issn | 2379-8920 2379-8939 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TCDS_2021_3094555 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Brain Brain fiber tracts Clustering Clustering algorithms Clustering methods deep clustering Deep learning feature construction Fields (mathematics) Optical fiber networks Segmentation Shape Streaming media streamline simplification vector field |
title | Vector Field Streamline Clustering Framework for Brain Fiber Tract Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20Field%20Streamline%20Clustering%20Framework%20for%20Brain%20Fiber%20Tract%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Xu,%20Chaoqing&rft.date=2022-09-01&rft.volume=14&rft.issue=3&rft.spage=1066&rft.epage=1081&rft.pages=1066-1081&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2021.3094555&rft_dat=%3Cproquest_RIE%3E2712053251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712053251&rft_id=info:pmid/&rft_ieee_id=9474448&rfr_iscdi=true |