Effective Brain Connectivity for fNIRS With Fuzzy Cognitive Maps in Neuroergonomics

Effective connectivity (EC) among functional near-infrared spectroscopy (fNIRS) signals is a quantitative measure of the strength of influence between brain activity associated with different regions of the brain. Evidently, accurate deciphering of EC gives further insight into the understanding of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2022-03, Vol.14 (1), p.50-63
Hauptverfasser: Kiani, Mehrin, Andreu-Perez, Javier, Hagras, Hani, Papageorgiou, Elpiniki I., Prasad, Mukesh, Lin, Chin-Teng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 50
container_title IEEE transactions on cognitive and developmental systems
container_volume 14
creator Kiani, Mehrin
Andreu-Perez, Javier
Hagras, Hani
Papageorgiou, Elpiniki I.
Prasad, Mukesh
Lin, Chin-Teng
description Effective connectivity (EC) among functional near-infrared spectroscopy (fNIRS) signals is a quantitative measure of the strength of influence between brain activity associated with different regions of the brain. Evidently, accurate deciphering of EC gives further insight into the understanding of the intricately complex nature of neuronal interactions in the human brain. This article presents a novel approach to estimate EC in the human brain signals using enhanced fuzzy cognitive maps (FCMs). The proposed method presents a regularized methodology of FCMs, called effective FCMs (E-FCMs), with improved accuracy for predicting EC between real and synthetic fNIRS signals. Essentially, the revisions made in the FCM methodology include a more powerful prediction formula for FCM combined with independent tuning of the transformation function parameter. A comparison of EC in fNIRS signals obtained from E-FCM with that obtained from standard FCM, general linear model (GLM) parameters that power dynamic causal modeling (DCM), and Granger causality (GC) manifests the greater prowess of the proposed E-FCM over the aforementioned methods. For real fNIRS data, an empirical investigation is also made to gain an insight into the role of oxyhemoglobin and deoxy-hemoglobin (oxy-Hb, deoxy-Hb) in representing the cognitive activity. We believe this article has profound implications for neuroergonomics research communities.
doi_str_mv 10.1109/TCDS.2019.2958423
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2019_2958423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8929015</ieee_id><sourcerecordid>2638123258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-d18dd566412ea5710f40e922763c57d4fce1a558ca848c323ec39c3d7b620dba3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUQIMoOOZ-gPhS8LkzyW3a5FHnpoM5wU18DFmazAzXzKQVtl9v98Gecgnn3AsHoVuC-4Rg8TAfPM_6FBPRp4LxjMIF6lAoRMoFiMvzTPE16sW4whiTHAqeFR00G1prdO3-TPIUlKuSga-qw4ert4n1IbHT8ccs-XL1dzJqdrttSywrdzDe1CYmrTM1TfAmLH3l107HG3Rl1U80vdPbRZ-j4Xzwmk7eX8aDx0mqAfI6LQkvS5bnGaFGsYJgm2EjKC1y0KwoM6sNUYxxrXjGNVAwGoSGsljkFJcLBV10f9y7Cf63MbGWK9-Eqj0paQ6cUKCMtxQ5Ujr4GIOxchPcWoWtJFju88l9PrnPJ0_5Wufu6DhjzJlvCwpMGPwDTWxrCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2638123258</pqid></control><display><type>article</type><title>Effective Brain Connectivity for fNIRS With Fuzzy Cognitive Maps in Neuroergonomics</title><source>IEEE Electronic Library (IEL)</source><creator>Kiani, Mehrin ; Andreu-Perez, Javier ; Hagras, Hani ; Papageorgiou, Elpiniki I. ; Prasad, Mukesh ; Lin, Chin-Teng</creator><creatorcontrib>Kiani, Mehrin ; Andreu-Perez, Javier ; Hagras, Hani ; Papageorgiou, Elpiniki I. ; Prasad, Mukesh ; Lin, Chin-Teng</creatorcontrib><description>Effective connectivity (EC) among functional near-infrared spectroscopy (fNIRS) signals is a quantitative measure of the strength of influence between brain activity associated with different regions of the brain. Evidently, accurate deciphering of EC gives further insight into the understanding of the intricately complex nature of neuronal interactions in the human brain. This article presents a novel approach to estimate EC in the human brain signals using enhanced fuzzy cognitive maps (FCMs). The proposed method presents a regularized methodology of FCMs, called effective FCMs (E-FCMs), with improved accuracy for predicting EC between real and synthetic fNIRS signals. Essentially, the revisions made in the FCM methodology include a more powerful prediction formula for FCM combined with independent tuning of the transformation function parameter. A comparison of EC in fNIRS signals obtained from E-FCM with that obtained from standard FCM, general linear model (GLM) parameters that power dynamic causal modeling (DCM), and Granger causality (GC) manifests the greater prowess of the proposed E-FCM over the aforementioned methods. For real fNIRS data, an empirical investigation is also made to gain an insight into the role of oxyhemoglobin and deoxy-hemoglobin (oxy-Hb, deoxy-Hb) in representing the cognitive activity. We believe this article has profound implications for neuroergonomics research communities.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2019.2958423</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Brain ; Brain connectivity ; Cognitive maps ; Cognitive models ; Data models ; effective connectivity (EC) ; Functional magnetic resonance imaging ; functional neuroimaging ; Fuzzy cognitive maps ; fuzzy cognitive maps (FCMs) ; fuzzy connectivity measures ; Genetic algorithms ; Hemoglobin ; Infrared spectra ; Mathematical models ; Medical imaging ; Near infrared radiation ; Oxyhemoglobin ; Parameters ; Task analysis ; Time series analysis</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2022-03, Vol.14 (1), p.50-63</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-d18dd566412ea5710f40e922763c57d4fce1a558ca848c323ec39c3d7b620dba3</citedby><cites>FETCH-LOGICAL-c336t-d18dd566412ea5710f40e922763c57d4fce1a558ca848c323ec39c3d7b620dba3</cites><orcidid>0000-0001-8371-8197 ; 0000-0002-2818-5292 ; 0000-0003-0677-2637 ; 0000-0002-7421-4808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8929015$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Kiani, Mehrin</creatorcontrib><creatorcontrib>Andreu-Perez, Javier</creatorcontrib><creatorcontrib>Hagras, Hani</creatorcontrib><creatorcontrib>Papageorgiou, Elpiniki I.</creatorcontrib><creatorcontrib>Prasad, Mukesh</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><title>Effective Brain Connectivity for fNIRS With Fuzzy Cognitive Maps in Neuroergonomics</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Effective connectivity (EC) among functional near-infrared spectroscopy (fNIRS) signals is a quantitative measure of the strength of influence between brain activity associated with different regions of the brain. Evidently, accurate deciphering of EC gives further insight into the understanding of the intricately complex nature of neuronal interactions in the human brain. This article presents a novel approach to estimate EC in the human brain signals using enhanced fuzzy cognitive maps (FCMs). The proposed method presents a regularized methodology of FCMs, called effective FCMs (E-FCMs), with improved accuracy for predicting EC between real and synthetic fNIRS signals. Essentially, the revisions made in the FCM methodology include a more powerful prediction formula for FCM combined with independent tuning of the transformation function parameter. A comparison of EC in fNIRS signals obtained from E-FCM with that obtained from standard FCM, general linear model (GLM) parameters that power dynamic causal modeling (DCM), and Granger causality (GC) manifests the greater prowess of the proposed E-FCM over the aforementioned methods. For real fNIRS data, an empirical investigation is also made to gain an insight into the role of oxyhemoglobin and deoxy-hemoglobin (oxy-Hb, deoxy-Hb) in representing the cognitive activity. We believe this article has profound implications for neuroergonomics research communities.</description><subject>Brain</subject><subject>Brain connectivity</subject><subject>Cognitive maps</subject><subject>Cognitive models</subject><subject>Data models</subject><subject>effective connectivity (EC)</subject><subject>Functional magnetic resonance imaging</subject><subject>functional neuroimaging</subject><subject>Fuzzy cognitive maps</subject><subject>fuzzy cognitive maps (FCMs)</subject><subject>fuzzy connectivity measures</subject><subject>Genetic algorithms</subject><subject>Hemoglobin</subject><subject>Infrared spectra</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Near infrared radiation</subject><subject>Oxyhemoglobin</subject><subject>Parameters</subject><subject>Task analysis</subject><subject>Time series analysis</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUQIMoOOZ-gPhS8LkzyW3a5FHnpoM5wU18DFmazAzXzKQVtl9v98Gecgnn3AsHoVuC-4Rg8TAfPM_6FBPRp4LxjMIF6lAoRMoFiMvzTPE16sW4whiTHAqeFR00G1prdO3-TPIUlKuSga-qw4ert4n1IbHT8ccs-XL1dzJqdrttSywrdzDe1CYmrTM1TfAmLH3l107HG3Rl1U80vdPbRZ-j4Xzwmk7eX8aDx0mqAfI6LQkvS5bnGaFGsYJgm2EjKC1y0KwoM6sNUYxxrXjGNVAwGoSGsljkFJcLBV10f9y7Cf63MbGWK9-Eqj0paQ6cUKCMtxQ5Ujr4GIOxchPcWoWtJFju88l9PrnPJ0_5Wufu6DhjzJlvCwpMGPwDTWxrCQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kiani, Mehrin</creator><creator>Andreu-Perez, Javier</creator><creator>Hagras, Hani</creator><creator>Papageorgiou, Elpiniki I.</creator><creator>Prasad, Mukesh</creator><creator>Lin, Chin-Teng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8371-8197</orcidid><orcidid>https://orcid.org/0000-0002-2818-5292</orcidid><orcidid>https://orcid.org/0000-0003-0677-2637</orcidid><orcidid>https://orcid.org/0000-0002-7421-4808</orcidid></search><sort><creationdate>20220301</creationdate><title>Effective Brain Connectivity for fNIRS With Fuzzy Cognitive Maps in Neuroergonomics</title><author>Kiani, Mehrin ; Andreu-Perez, Javier ; Hagras, Hani ; Papageorgiou, Elpiniki I. ; Prasad, Mukesh ; Lin, Chin-Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-d18dd566412ea5710f40e922763c57d4fce1a558ca848c323ec39c3d7b620dba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brain</topic><topic>Brain connectivity</topic><topic>Cognitive maps</topic><topic>Cognitive models</topic><topic>Data models</topic><topic>effective connectivity (EC)</topic><topic>Functional magnetic resonance imaging</topic><topic>functional neuroimaging</topic><topic>Fuzzy cognitive maps</topic><topic>fuzzy cognitive maps (FCMs)</topic><topic>fuzzy connectivity measures</topic><topic>Genetic algorithms</topic><topic>Hemoglobin</topic><topic>Infrared spectra</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Near infrared radiation</topic><topic>Oxyhemoglobin</topic><topic>Parameters</topic><topic>Task analysis</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Kiani, Mehrin</creatorcontrib><creatorcontrib>Andreu-Perez, Javier</creatorcontrib><creatorcontrib>Hagras, Hani</creatorcontrib><creatorcontrib>Papageorgiou, Elpiniki I.</creatorcontrib><creatorcontrib>Prasad, Mukesh</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiani, Mehrin</au><au>Andreu-Perez, Javier</au><au>Hagras, Hani</au><au>Papageorgiou, Elpiniki I.</au><au>Prasad, Mukesh</au><au>Lin, Chin-Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Brain Connectivity for fNIRS With Fuzzy Cognitive Maps in Neuroergonomics</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>50</spage><epage>63</epage><pages>50-63</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Effective connectivity (EC) among functional near-infrared spectroscopy (fNIRS) signals is a quantitative measure of the strength of influence between brain activity associated with different regions of the brain. Evidently, accurate deciphering of EC gives further insight into the understanding of the intricately complex nature of neuronal interactions in the human brain. This article presents a novel approach to estimate EC in the human brain signals using enhanced fuzzy cognitive maps (FCMs). The proposed method presents a regularized methodology of FCMs, called effective FCMs (E-FCMs), with improved accuracy for predicting EC between real and synthetic fNIRS signals. Essentially, the revisions made in the FCM methodology include a more powerful prediction formula for FCM combined with independent tuning of the transformation function parameter. A comparison of EC in fNIRS signals obtained from E-FCM with that obtained from standard FCM, general linear model (GLM) parameters that power dynamic causal modeling (DCM), and Granger causality (GC) manifests the greater prowess of the proposed E-FCM over the aforementioned methods. For real fNIRS data, an empirical investigation is also made to gain an insight into the role of oxyhemoglobin and deoxy-hemoglobin (oxy-Hb, deoxy-Hb) in representing the cognitive activity. We believe this article has profound implications for neuroergonomics research communities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2019.2958423</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8371-8197</orcidid><orcidid>https://orcid.org/0000-0002-2818-5292</orcidid><orcidid>https://orcid.org/0000-0003-0677-2637</orcidid><orcidid>https://orcid.org/0000-0002-7421-4808</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2022-03, Vol.14 (1), p.50-63
issn 2379-8920
2379-8939
language eng
recordid cdi_crossref_primary_10_1109_TCDS_2019_2958423
source IEEE Electronic Library (IEL)
subjects Brain
Brain connectivity
Cognitive maps
Cognitive models
Data models
effective connectivity (EC)
Functional magnetic resonance imaging
functional neuroimaging
Fuzzy cognitive maps
fuzzy cognitive maps (FCMs)
fuzzy connectivity measures
Genetic algorithms
Hemoglobin
Infrared spectra
Mathematical models
Medical imaging
Near infrared radiation
Oxyhemoglobin
Parameters
Task analysis
Time series analysis
title Effective Brain Connectivity for fNIRS With Fuzzy Cognitive Maps in Neuroergonomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Brain%20Connectivity%20for%20fNIRS%20With%20Fuzzy%20Cognitive%20Maps%20in%20Neuroergonomics&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Kiani,%20Mehrin&rft.date=2022-03-01&rft.volume=14&rft.issue=1&rft.spage=50&rft.epage=63&rft.pages=50-63&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2019.2958423&rft_dat=%3Cproquest_cross%3E2638123258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2638123258&rft_id=info:pmid/&rft_ieee_id=8929015&rfr_iscdi=true