Real-Time Myocontrol of a Human-Computer Interface by Paretic Muscles After Stroke

Biosignals from skeletal muscle have been used to control human-machine interface. Signals from paretic muscles of humans with stroke are distorted and highly variable. Here, we examine the stability of surface electromyography (sEMG) features from paretic hand muscles to enable continuous, real-tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2018-12, Vol.10 (4), p.1126-1132
Hauptverfasser: Chun Yang, Jinyi Long, Urbin, M. A., Yanyun Feng, Ge Song, Jian Weng, Zhijun Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1132
container_issue 4
container_start_page 1126
container_title IEEE transactions on cognitive and developmental systems
container_volume 10
creator Chun Yang
Jinyi Long
Urbin, M. A.
Yanyun Feng
Ge Song
Jian Weng
Zhijun Li
description Biosignals from skeletal muscle have been used to control human-machine interface. Signals from paretic muscles of humans with stroke are distorted and highly variable. Here, we examine the stability of surface electromyography (sEMG) features from paretic hand muscles to enable continuous, real-time multicommand control of a human-computer interface (HC!). Subjects with long standing cortical strokes (>6 months, n = 12) and neurologically intact controls (n = 12) performed two wrist rotations (wrist extend and wrist flex) and two grips (power grip and fine grip) with the nondominant (controls) or paretic (stroke patients) hand. Data reduction analyses revealed a distinct pattern of coactivation across muscles for each gesture. These synergies were similar for control and stroke groups and stable across sessions. Results of offline experiments involving wrist rotation and hand grips confirmed that gestures performed in isolation or combination were recognized at greater than chance level in both groups (p
doi_str_mv 10.1109/TCDS.2018.2830388
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCDS_2018_2830388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8350308</ieee_id><sourcerecordid>2299148232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e338bcfab555540e61d55342a798a56d2e8fb2c4c80892924c3c442b39609183</originalsourceid><addsrcrecordid>eNo9kE1rwzAMhs3YYKXrDxi7GHZOZ1tOYh9L9tFCy0abu3FcBdI1ceckh_77JbTUB1mH55XEQ8gzZ3POmX7Ls_fdXDCu5kIBA6XuyERAqiOlQd_fesEeyaxtD4wxnkCqZDoh2y3aY5RXNdLN2TvfdMEfqS-ppcu-tk2U-frUdxjoqhlqaR3S4kx_bMCucnTTt-6ILV2UI7Ibwr_4RB5Ke2xxdv2nJP_8yLNltP7-WmWLdeQg1l2EAKpwpS3i4UmGCd_HMUhhU61snOwFqrIQTjrFhtO1kA6clKIAnTDNFUzJ62XsKfi_HtvOHHwfmmGjEUJrLpUAMVD8Qrng2zZgaU6hqm04G87MKM-M8swoz1zlDZmXS6ZCxBuvIGbAFPwDkkNpEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299148232</pqid></control><display><type>article</type><title>Real-Time Myocontrol of a Human-Computer Interface by Paretic Muscles After Stroke</title><source>IEEE Electronic Library (IEL)</source><creator>Chun Yang ; Jinyi Long ; Urbin, M. A. ; Yanyun Feng ; Ge Song ; Jian Weng ; Zhijun Li</creator><creatorcontrib>Chun Yang ; Jinyi Long ; Urbin, M. A. ; Yanyun Feng ; Ge Song ; Jian Weng ; Zhijun Li</creatorcontrib><description>Biosignals from skeletal muscle have been used to control human-machine interface. Signals from paretic muscles of humans with stroke are distorted and highly variable. Here, we examine the stability of surface electromyography (sEMG) features from paretic hand muscles to enable continuous, real-time multicommand control of a human-computer interface (HC!). Subjects with long standing cortical strokes (&gt;6 months, n = 12) and neurologically intact controls (n = 12) performed two wrist rotations (wrist extend and wrist flex) and two grips (power grip and fine grip) with the nondominant (controls) or paretic (stroke patients) hand. Data reduction analyses revealed a distinct pattern of coactivation across muscles for each gesture. These synergies were similar for control and stroke groups and stable across sessions. Results of offline experiments involving wrist rotation and hand grips confirmed that gestures performed in isolation or combination were recognized at greater than chance level in both groups (p &lt;; 0.01). !n online experiments, HC! control was evaluated with a balloon shooter game. Users in both groups were able to control the direction and speed of a simulated bullet to a balloon target with greater than chance-level accuracy (p &lt;; 0.01). Taken together, these results demonstrate that sEMG synergy features from paretic hand muscles can be used to drive continuous, real-time multicommand control of an HC!.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2018.2830388</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Balloons ; Biomedical signal processing ; Computer &amp; video games ; Computer simulation ; Data reduction ; Electromyography ; hand gesture recognition ; Hand tools ; hemiparesis ; Human computer interaction ; Human-computer interface ; human–computer interface (HCI) ; Man-machine interfaces ; Muscles ; Real time ; Real-time systems ; rehabilitation ; Stroke ; Surface stability ; Task analysis ; Training ; Wrist</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2018-12, Vol.10 (4), p.1126-1132</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e338bcfab555540e61d55342a798a56d2e8fb2c4c80892924c3c442b39609183</citedby><cites>FETCH-LOGICAL-c359t-e338bcfab555540e61d55342a798a56d2e8fb2c4c80892924c3c442b39609183</cites><orcidid>0000-0001-6150-987X ; 0000-0002-4820-5174 ; 0000-0002-3909-488X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8350308$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8350308$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chun Yang</creatorcontrib><creatorcontrib>Jinyi Long</creatorcontrib><creatorcontrib>Urbin, M. A.</creatorcontrib><creatorcontrib>Yanyun Feng</creatorcontrib><creatorcontrib>Ge Song</creatorcontrib><creatorcontrib>Jian Weng</creatorcontrib><creatorcontrib>Zhijun Li</creatorcontrib><title>Real-Time Myocontrol of a Human-Computer Interface by Paretic Muscles After Stroke</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Biosignals from skeletal muscle have been used to control human-machine interface. Signals from paretic muscles of humans with stroke are distorted and highly variable. Here, we examine the stability of surface electromyography (sEMG) features from paretic hand muscles to enable continuous, real-time multicommand control of a human-computer interface (HC!). Subjects with long standing cortical strokes (&gt;6 months, n = 12) and neurologically intact controls (n = 12) performed two wrist rotations (wrist extend and wrist flex) and two grips (power grip and fine grip) with the nondominant (controls) or paretic (stroke patients) hand. Data reduction analyses revealed a distinct pattern of coactivation across muscles for each gesture. These synergies were similar for control and stroke groups and stable across sessions. Results of offline experiments involving wrist rotation and hand grips confirmed that gestures performed in isolation or combination were recognized at greater than chance level in both groups (p &lt;; 0.01). !n online experiments, HC! control was evaluated with a balloon shooter game. Users in both groups were able to control the direction and speed of a simulated bullet to a balloon target with greater than chance-level accuracy (p &lt;; 0.01). Taken together, these results demonstrate that sEMG synergy features from paretic hand muscles can be used to drive continuous, real-time multicommand control of an HC!.</description><subject>Balloons</subject><subject>Biomedical signal processing</subject><subject>Computer &amp; video games</subject><subject>Computer simulation</subject><subject>Data reduction</subject><subject>Electromyography</subject><subject>hand gesture recognition</subject><subject>Hand tools</subject><subject>hemiparesis</subject><subject>Human computer interaction</subject><subject>Human-computer interface</subject><subject>human–computer interface (HCI)</subject><subject>Man-machine interfaces</subject><subject>Muscles</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>rehabilitation</subject><subject>Stroke</subject><subject>Surface stability</subject><subject>Task analysis</subject><subject>Training</subject><subject>Wrist</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rwzAMhs3YYKXrDxi7GHZOZ1tOYh9L9tFCy0abu3FcBdI1ceckh_77JbTUB1mH55XEQ8gzZ3POmX7Ls_fdXDCu5kIBA6XuyERAqiOlQd_fesEeyaxtD4wxnkCqZDoh2y3aY5RXNdLN2TvfdMEfqS-ppcu-tk2U-frUdxjoqhlqaR3S4kx_bMCucnTTt-6ILV2UI7Ibwr_4RB5Ke2xxdv2nJP_8yLNltP7-WmWLdeQg1l2EAKpwpS3i4UmGCd_HMUhhU61snOwFqrIQTjrFhtO1kA6clKIAnTDNFUzJ62XsKfi_HtvOHHwfmmGjEUJrLpUAMVD8Qrng2zZgaU6hqm04G87MKM-M8swoz1zlDZmXS6ZCxBuvIGbAFPwDkkNpEw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Chun Yang</creator><creator>Jinyi Long</creator><creator>Urbin, M. A.</creator><creator>Yanyun Feng</creator><creator>Ge Song</creator><creator>Jian Weng</creator><creator>Zhijun Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6150-987X</orcidid><orcidid>https://orcid.org/0000-0002-4820-5174</orcidid><orcidid>https://orcid.org/0000-0002-3909-488X</orcidid></search><sort><creationdate>20181201</creationdate><title>Real-Time Myocontrol of a Human-Computer Interface by Paretic Muscles After Stroke</title><author>Chun Yang ; Jinyi Long ; Urbin, M. A. ; Yanyun Feng ; Ge Song ; Jian Weng ; Zhijun Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e338bcfab555540e61d55342a798a56d2e8fb2c4c80892924c3c442b39609183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Balloons</topic><topic>Biomedical signal processing</topic><topic>Computer &amp; video games</topic><topic>Computer simulation</topic><topic>Data reduction</topic><topic>Electromyography</topic><topic>hand gesture recognition</topic><topic>Hand tools</topic><topic>hemiparesis</topic><topic>Human computer interaction</topic><topic>Human-computer interface</topic><topic>human–computer interface (HCI)</topic><topic>Man-machine interfaces</topic><topic>Muscles</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>rehabilitation</topic><topic>Stroke</topic><topic>Surface stability</topic><topic>Task analysis</topic><topic>Training</topic><topic>Wrist</topic><toplevel>online_resources</toplevel><creatorcontrib>Chun Yang</creatorcontrib><creatorcontrib>Jinyi Long</creatorcontrib><creatorcontrib>Urbin, M. A.</creatorcontrib><creatorcontrib>Yanyun Feng</creatorcontrib><creatorcontrib>Ge Song</creatorcontrib><creatorcontrib>Jian Weng</creatorcontrib><creatorcontrib>Zhijun Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chun Yang</au><au>Jinyi Long</au><au>Urbin, M. A.</au><au>Yanyun Feng</au><au>Ge Song</au><au>Jian Weng</au><au>Zhijun Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Myocontrol of a Human-Computer Interface by Paretic Muscles After Stroke</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>10</volume><issue>4</issue><spage>1126</spage><epage>1132</epage><pages>1126-1132</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Biosignals from skeletal muscle have been used to control human-machine interface. Signals from paretic muscles of humans with stroke are distorted and highly variable. Here, we examine the stability of surface electromyography (sEMG) features from paretic hand muscles to enable continuous, real-time multicommand control of a human-computer interface (HC!). Subjects with long standing cortical strokes (&gt;6 months, n = 12) and neurologically intact controls (n = 12) performed two wrist rotations (wrist extend and wrist flex) and two grips (power grip and fine grip) with the nondominant (controls) or paretic (stroke patients) hand. Data reduction analyses revealed a distinct pattern of coactivation across muscles for each gesture. These synergies were similar for control and stroke groups and stable across sessions. Results of offline experiments involving wrist rotation and hand grips confirmed that gestures performed in isolation or combination were recognized at greater than chance level in both groups (p &lt;; 0.01). !n online experiments, HC! control was evaluated with a balloon shooter game. Users in both groups were able to control the direction and speed of a simulated bullet to a balloon target with greater than chance-level accuracy (p &lt;; 0.01). Taken together, these results demonstrate that sEMG synergy features from paretic hand muscles can be used to drive continuous, real-time multicommand control of an HC!.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2018.2830388</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6150-987X</orcidid><orcidid>https://orcid.org/0000-0002-4820-5174</orcidid><orcidid>https://orcid.org/0000-0002-3909-488X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2018-12, Vol.10 (4), p.1126-1132
issn 2379-8920
2379-8939
language eng
recordid cdi_crossref_primary_10_1109_TCDS_2018_2830388
source IEEE Electronic Library (IEL)
subjects Balloons
Biomedical signal processing
Computer & video games
Computer simulation
Data reduction
Electromyography
hand gesture recognition
Hand tools
hemiparesis
Human computer interaction
Human-computer interface
human–computer interface (HCI)
Man-machine interfaces
Muscles
Real time
Real-time systems
rehabilitation
Stroke
Surface stability
Task analysis
Training
Wrist
title Real-Time Myocontrol of a Human-Computer Interface by Paretic Muscles After Stroke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Myocontrol%20of%20a%20Human-Computer%20Interface%20by%20Paretic%20Muscles%20After%20Stroke&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Chun%20Yang&rft.date=2018-12-01&rft.volume=10&rft.issue=4&rft.spage=1126&rft.epage=1132&rft.pages=1126-1132&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2018.2830388&rft_dat=%3Cproquest_RIE%3E2299148232%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299148232&rft_id=info:pmid/&rft_ieee_id=8350308&rfr_iscdi=true