Integrated Computation Offloading, UAV Trajectory Control, Edge-Cloud and Radio Resource Allocation in SAGIN
In this article, we study the computation offloading problem in hybrid edge-cloud based space-air-ground integrated networks (SAGIN), where joint optimization of partial computation offloading, unmanned aerial vehicle (UAV) trajectory control, user scheduling, edge-cloud computation, radio resource...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cloud computing 2024-01, Vol.12 (1), p.100-115 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the computation offloading problem in hybrid edge-cloud based space-air-ground integrated networks (SAGIN), where joint optimization of partial computation offloading, unmanned aerial vehicle (UAV) trajectory control, user scheduling, edge-cloud computation, radio resource allocation, and admission control is performed. Specifically, the considered SAGIN employs multiple UAV-mounted edge servers with controllable UAV trajectory and a cloud sever which can be reached by ground users (GUs) via multi-hop low-earth-orbit (LEO) satellite communications. This design aims to minimize the weighted energy consumption of the GUs and UAVs while satisfying the maximum delay constraints of underlying computation tasks. To tackle the underlying non-convex mixed integer non-linear optimization problem, we use the alternating optimization approach where we iteratively solve four sub-problems, namely user scheduling, partial offloading control and bit allocation over time slots, computation resource and bandwidth allocation, and multi-UAV trajectory control until convergence. Moreover, feasibility verification and admission control strategies are proposed to handle overloaded network scenarios. Furthermore, the successive convex approximation (SCA) method is employed to convexify and solve the non-convex computation resource and bandwidth allocation and UAV trajectory control sub-problems. Via extensive numerical studies, we illustrate the effectiveness of our proposed design compared to baselines. |
---|---|
ISSN: | 2168-7161 2372-0018 |
DOI: | 10.1109/TCC.2023.3339394 |