DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning

Recent advances in deep neural networks have substantially improved the accuracy and speed of various intelligent applications. Nevertheless, one obstacle is that DNN inference imposes a heavy computation burden on end devices, but offloading inference tasks to the cloud causes a large volume of dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2023-07, Vol.11 (3), p.3111-3125
Hauptverfasser: Liang, Huanghuang, Sang, Qianlong, Hu, Chuang, Cheng, Dazhao, Zhou, Xiaobo, Wang, Dan, Bao, Wei, Wang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3125
container_issue 3
container_start_page 3111
container_title IEEE transactions on cloud computing
container_volume 11
creator Liang, Huanghuang
Sang, Qianlong
Hu, Chuang
Cheng, Dazhao
Zhou, Xiaobo
Wang, Dan
Bao, Wei
Wang, Yu
description Recent advances in deep neural networks have substantially improved the accuracy and speed of various intelligent applications. Nevertheless, one obstacle is that DNN inference imposes a heavy computation burden on end devices, but offloading inference tasks to the cloud causes a large volume of data transmission. Motivated by the fact that the data size of some intermediate DNN layers is significantly smaller than that of raw input data, we designed the DNN surgery, which allows partitioned DNN to be processed at both the edge and cloud while limiting the data transmission. The challenge is twofold: (1) Network dynamics substantially influence the performance of DNN partition, and (2) State-of-the-art DNNs are characterized by a directed acyclic graph rather than a chain, so that partition is incredibly complicated. To solve the issues, We design a Dynamic Adaptive DNN Surgery(DADS) scheme, which optimally partitions the DNN under different network conditions. We also study the partition problem under the cost-constrained system, where the resource of the cloud for inference is limited. Then, a real-world prototype based on the selif-driving car video dataset is implemented, showing that compared with current approaches, DNN surgery can improve latency up to 6.45 times and improve throughput up to 8.31 times. We further evaluate DNN surgery through two case studies where we use DNN surgery to support an indoor intrusion detection application and a campus traffic monitor application, and DNN surgery shows consistently high throughput and low latency.
doi_str_mv 10.1109/TCC.2023.3258982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TCC_2023_3258982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10076802</ieee_id><sourcerecordid>2861459982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-44ccb71f9d6686965ad8c46e8f42e24cb180a41a56c4a66950f5f2597ae751bd3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQRi0EElXpzsBgiTnF59iOzVaFApWqgkSZLde5pKlKUpxk6L_HVTtwy51077uTHiH3wKYAzDyt83zKGU-nKZfaaH5FRjzNeMIY6Os4g9JJBgpuyaTrdiyWlmDAjMjqZbWiX0OoMByf6cx73GNwfd1U9LRZNCUGbDzStqH9Fum8qJCut6Edqi1duiMG-ulCX_d128TQHbkp3b7DyaWPyffrfJ2_J8uPt0U-WyaeG94nQni_yaA0hVJaGSVdob1QqEvBkQu_Ac2cACeVF04pI1kpSy5N5jCTsCnSMXk83z2E9nfArre7dghNfGm5ViCkiRYixc6UD23XBSztIdQ_LhwtMHsSZ6M4exJnL-Ji5OEcqRHxH84ypSP3Bx1-Z4E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861459982</pqid></control><display><type>article</type><title>DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Huanghuang ; Sang, Qianlong ; Hu, Chuang ; Cheng, Dazhao ; Zhou, Xiaobo ; Wang, Dan ; Bao, Wei ; Wang, Yu</creator><creatorcontrib>Liang, Huanghuang ; Sang, Qianlong ; Hu, Chuang ; Cheng, Dazhao ; Zhou, Xiaobo ; Wang, Dan ; Bao, Wei ; Wang, Yu</creatorcontrib><description>Recent advances in deep neural networks have substantially improved the accuracy and speed of various intelligent applications. Nevertheless, one obstacle is that DNN inference imposes a heavy computation burden on end devices, but offloading inference tasks to the cloud causes a large volume of data transmission. Motivated by the fact that the data size of some intermediate DNN layers is significantly smaller than that of raw input data, we designed the DNN surgery, which allows partitioned DNN to be processed at both the edge and cloud while limiting the data transmission. The challenge is twofold: (1) Network dynamics substantially influence the performance of DNN partition, and (2) State-of-the-art DNNs are characterized by a directed acyclic graph rather than a chain, so that partition is incredibly complicated. To solve the issues, We design a Dynamic Adaptive DNN Surgery(DADS) scheme, which optimally partitions the DNN under different network conditions. We also study the partition problem under the cost-constrained system, where the resource of the cloud for inference is limited. Then, a real-world prototype based on the selif-driving car video dataset is implemented, showing that compared with current approaches, DNN surgery can improve latency up to 6.45 times and improve throughput up to 8.31 times. We further evaluate DNN surgery through two case studies where we use DNN surgery to support an indoor intrusion detection application and a campus traffic monitor application, and DNN surgery shows consistently high throughput and low latency.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2023.3258982</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cloud computing ; Computation offloading ; Data transmission ; Deep learning ; deep neural networks ; Delays ; edge computing ; Inference ; inference acceleration ; layer partitioning ; Network latency ; Neural networks ; Surgery ; Throughput ; Visual analytics</subject><ispartof>IEEE transactions on cloud computing, 2023-07, Vol.11 (3), p.3111-3125</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-44ccb71f9d6686965ad8c46e8f42e24cb180a41a56c4a66950f5f2597ae751bd3</citedby><cites>FETCH-LOGICAL-c292t-44ccb71f9d6686965ad8c46e8f42e24cb180a41a56c4a66950f5f2597ae751bd3</cites><orcidid>0000-0002-9051-3242 ; 0000-0003-2869-7623 ; 0009-0004-9500-3390 ; 0000-0003-3511-0288 ; 0000-0003-2847-0285 ; 0009-0005-1563-9434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10076802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10076802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang, Huanghuang</creatorcontrib><creatorcontrib>Sang, Qianlong</creatorcontrib><creatorcontrib>Hu, Chuang</creatorcontrib><creatorcontrib>Cheng, Dazhao</creatorcontrib><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Bao, Wei</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><title>DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Recent advances in deep neural networks have substantially improved the accuracy and speed of various intelligent applications. Nevertheless, one obstacle is that DNN inference imposes a heavy computation burden on end devices, but offloading inference tasks to the cloud causes a large volume of data transmission. Motivated by the fact that the data size of some intermediate DNN layers is significantly smaller than that of raw input data, we designed the DNN surgery, which allows partitioned DNN to be processed at both the edge and cloud while limiting the data transmission. The challenge is twofold: (1) Network dynamics substantially influence the performance of DNN partition, and (2) State-of-the-art DNNs are characterized by a directed acyclic graph rather than a chain, so that partition is incredibly complicated. To solve the issues, We design a Dynamic Adaptive DNN Surgery(DADS) scheme, which optimally partitions the DNN under different network conditions. We also study the partition problem under the cost-constrained system, where the resource of the cloud for inference is limited. Then, a real-world prototype based on the selif-driving car video dataset is implemented, showing that compared with current approaches, DNN surgery can improve latency up to 6.45 times and improve throughput up to 8.31 times. We further evaluate DNN surgery through two case studies where we use DNN surgery to support an indoor intrusion detection application and a campus traffic monitor application, and DNN surgery shows consistently high throughput and low latency.</description><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Computation offloading</subject><subject>Data transmission</subject><subject>Deep learning</subject><subject>deep neural networks</subject><subject>Delays</subject><subject>edge computing</subject><subject>Inference</subject><subject>inference acceleration</subject><subject>layer partitioning</subject><subject>Network latency</subject><subject>Neural networks</subject><subject>Surgery</subject><subject>Throughput</subject><subject>Visual analytics</subject><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQRi0EElXpzsBgiTnF59iOzVaFApWqgkSZLde5pKlKUpxk6L_HVTtwy51077uTHiH3wKYAzDyt83zKGU-nKZfaaH5FRjzNeMIY6Os4g9JJBgpuyaTrdiyWlmDAjMjqZbWiX0OoMByf6cx73GNwfd1U9LRZNCUGbDzStqH9Fum8qJCut6Edqi1duiMG-ulCX_d128TQHbkp3b7DyaWPyffrfJ2_J8uPt0U-WyaeG94nQni_yaA0hVJaGSVdob1QqEvBkQu_Ac2cACeVF04pI1kpSy5N5jCTsCnSMXk83z2E9nfArre7dghNfGm5ViCkiRYixc6UD23XBSztIdQ_LhwtMHsSZ6M4exJnL-Ji5OEcqRHxH84ypSP3Bx1-Z4E</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Liang, Huanghuang</creator><creator>Sang, Qianlong</creator><creator>Hu, Chuang</creator><creator>Cheng, Dazhao</creator><creator>Zhou, Xiaobo</creator><creator>Wang, Dan</creator><creator>Bao, Wei</creator><creator>Wang, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9051-3242</orcidid><orcidid>https://orcid.org/0000-0003-2869-7623</orcidid><orcidid>https://orcid.org/0009-0004-9500-3390</orcidid><orcidid>https://orcid.org/0000-0003-3511-0288</orcidid><orcidid>https://orcid.org/0000-0003-2847-0285</orcidid><orcidid>https://orcid.org/0009-0005-1563-9434</orcidid></search><sort><creationdate>20230701</creationdate><title>DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning</title><author>Liang, Huanghuang ; Sang, Qianlong ; Hu, Chuang ; Cheng, Dazhao ; Zhou, Xiaobo ; Wang, Dan ; Bao, Wei ; Wang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-44ccb71f9d6686965ad8c46e8f42e24cb180a41a56c4a66950f5f2597ae751bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Computation offloading</topic><topic>Data transmission</topic><topic>Deep learning</topic><topic>deep neural networks</topic><topic>Delays</topic><topic>edge computing</topic><topic>Inference</topic><topic>inference acceleration</topic><topic>layer partitioning</topic><topic>Network latency</topic><topic>Neural networks</topic><topic>Surgery</topic><topic>Throughput</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Huanghuang</creatorcontrib><creatorcontrib>Sang, Qianlong</creatorcontrib><creatorcontrib>Hu, Chuang</creatorcontrib><creatorcontrib>Cheng, Dazhao</creatorcontrib><creatorcontrib>Zhou, Xiaobo</creatorcontrib><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Bao, Wei</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Huanghuang</au><au>Sang, Qianlong</au><au>Hu, Chuang</au><au>Cheng, Dazhao</au><au>Zhou, Xiaobo</au><au>Wang, Dan</au><au>Bao, Wei</au><au>Wang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>11</volume><issue>3</issue><spage>3111</spage><epage>3125</epage><pages>3111-3125</pages><issn>2168-7161</issn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Recent advances in deep neural networks have substantially improved the accuracy and speed of various intelligent applications. Nevertheless, one obstacle is that DNN inference imposes a heavy computation burden on end devices, but offloading inference tasks to the cloud causes a large volume of data transmission. Motivated by the fact that the data size of some intermediate DNN layers is significantly smaller than that of raw input data, we designed the DNN surgery, which allows partitioned DNN to be processed at both the edge and cloud while limiting the data transmission. The challenge is twofold: (1) Network dynamics substantially influence the performance of DNN partition, and (2) State-of-the-art DNNs are characterized by a directed acyclic graph rather than a chain, so that partition is incredibly complicated. To solve the issues, We design a Dynamic Adaptive DNN Surgery(DADS) scheme, which optimally partitions the DNN under different network conditions. We also study the partition problem under the cost-constrained system, where the resource of the cloud for inference is limited. Then, a real-world prototype based on the selif-driving car video dataset is implemented, showing that compared with current approaches, DNN surgery can improve latency up to 6.45 times and improve throughput up to 8.31 times. We further evaluate DNN surgery through two case studies where we use DNN surgery to support an indoor intrusion detection application and a campus traffic monitor application, and DNN surgery shows consistently high throughput and low latency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCC.2023.3258982</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9051-3242</orcidid><orcidid>https://orcid.org/0000-0003-2869-7623</orcidid><orcidid>https://orcid.org/0009-0004-9500-3390</orcidid><orcidid>https://orcid.org/0000-0003-3511-0288</orcidid><orcidid>https://orcid.org/0000-0003-2847-0285</orcidid><orcidid>https://orcid.org/0009-0005-1563-9434</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2023-07, Vol.11 (3), p.3111-3125
issn 2168-7161
2372-0018
language eng
recordid cdi_crossref_primary_10_1109_TCC_2023_3258982
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Cloud computing
Computation offloading
Data transmission
Deep learning
deep neural networks
Delays
edge computing
Inference
inference acceleration
layer partitioning
Network latency
Neural networks
Surgery
Throughput
Visual analytics
title DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNN%20Surgery:%20Accelerating%20DNN%20Inference%20on%20the%20Edge%20Through%20Layer%20Partitioning&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Liang,%20Huanghuang&rft.date=2023-07-01&rft.volume=11&rft.issue=3&rft.spage=3111&rft.epage=3125&rft.pages=3111-3125&rft.issn=2168-7161&rft.eissn=2372-0018&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2023.3258982&rft_dat=%3Cproquest_RIE%3E2861459982%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2861459982&rft_id=info:pmid/&rft_ieee_id=10076802&rfr_iscdi=true